
		DEPARTMENT	ATE OF UTAH OF NATURAL RES F OIL, GAS AND I				FOR	RM 3
APPLI	CATION FOR I	PERMIT TO DRILL				1. WELL NAME and First	I NUMBER st Christian 11-19-4-	1E
2. TYPE OF WORK DRILL NEW WELL	REENTER P&A	WELL DEEPE	N WELL			3. FIELD OR WILD	CAT UNDESIGNATED	
4. TYPE OF WELL Oil We	ell Coalbe	d Methane Well: NO				5. UNIT or COMMU	JNITIZATION AGRE	EMENT NAME
6. NAME OF OPERATOR	WFIELD PRODUC	TION COMPANY				7. OPERATOR PHO	NE 435 646-4825	
8. ADDRESS OF OPERATOR	t 3 Box 3630 , My	ton, UT, 84052				9. OPERATOR E-M	AIL crozier@newfield.cor	n
10. MINERAL LEASE NUMBER (FEDERAL, INDIAN, OR STATE) FEE		11. MINERAL OWNE		FEE (<u> </u>	12. SURFACE OWN	IERSHIP IDIAN STATE	FEE (B)
13. NAME OF SURFACE OWNER (if box 12	= 'fee') Oman Uintah	Farm, LLC				14. SURFACE OWN	IER PHONE (if box	12 = 'fee')
15. ADDRESS OF SURFACE OWNER (if box						16. SURFACE OWN	IER E-MAIL (if box	12 = 'fee')
17. INDIAN ALLOTTEE OR TRIBE NAME		18. INTEND TO COM MULTIPLE FORMATI		TION FROM		19. SLANT		
(if box 12 = 'INDIAN')			ommingling Applicat	tion) NO (0	VERTICAL D	RECTIONAL 📵 🕒	IORIZONTAL 🗍
20. LOCATION OF WELL	FOC	TAGES	QTR-QTR	SECTI	ON	TOWNSHIP	RANGE	MERIDIAN
LOCATION AT SURFACE	2312 FSI	_ 2014 FWL	NESW	19		4.0 S	1.0 E	U
Top of Uppermost Producing Zone	2312 FSI	_ 2014 FWL	NESW	19		4.0 S	1.0 E	U
At Total Depth	1898 FSI	_ 2112 FWL	NESW	19		4.0 S	1.0 E	U
21. COUNTY UINTAH		22. DISTANCE TO N	EAREST LEASE LIN 578	IE (Feet)		23. NUMBER OF A	CRES IN DRILLING	UNIT
		25. DISTANCE TO NE (Applied For Drilling		SAME POOL	-	26. PROPOSED DE	PTH D: 6999 TVD: 699	9
27. ELEVATION - GROUND LEVEL		28. BOND NUMBER				29. SOURCE OF DI	RILLING WATER / PPROVAL NUMBER	IF APPLICABLE
4989			B001834				43-7478	
		АТ	TTACHMENTS					
VERIFY THE FOLLOWING	ARE ATTACHE	D IN ACCORDANG	CE WITH THE U	TAH OIL	AND G	GAS CONSERVAT	ION GENERAL R	ULES
WELL PLAT OR MAP PREPARED BY	LICENSED SURV	EYOR OR ENGINEER	COM	IPLETE DRI	ILLING	PLAN		
AFFIDAVIT OF STATUS OF SURFACE	OWNER AGREE	MENT (IF FEE SURF	ACE) FORI	M 5. IF OPE	ERATOI	R IS OTHER THAN	THE LEASE OWNER	
DIRECTIONAL SURVEY PLAN (IF DI	RECTIONALLY C	OR HORIZONTALLY	г торе	OGRAPHIC	AL MAI	•		
NAME Mandie Crozier		TITLE Regulatory T	Гесh		PHO	NE 435 646-4825		
SIGNATURE		DATE 06/03/2010			EMAI	L mcrozier@newfield	i.com	
API NUMBER ASSIGNED 43047511030000		APPROVAL			B	Myson		
					D,	ermit Manager		

API Well No: 43047511030000 Received: 6/3/2010

	Prop	oosed Hole, Casing, a	nd Cement		
String	Hole Size	Casing Size	Top (MD)	Bottom (MD)	
Prod	7.875	5.5	0	6999	
Pipe	Grade	Length	Weight		
	Grade J-55 LT&C	6999	15.5		

API Well No: 43047511030000 Received: 6/3/2010

	Proj	oosed Hole, Casing, a	and Cement		
String	Hole Size	Casing Size	Top (MD)	Bottom (MD)	
Surf	12.25	8.625	0	400	
Pipe	Grade	Length	Weight		
	Grade J-55 ST&C	400	24.0		

MEMORANDUM of EASEMENT, RIGHT-OF-WAY and SURFACE USE AGREEMENT

This Easement, Right-of-Way and Surface Use Agreement ("Agreement") is entered into this 28th day of October, 2009 by and between Oman Uintah Farm, LLC whose address is 14340 South 3600 West, Bluffdale, UT 84065, ("Surface Owner," whether one or more) and Newfield Production Company, a Texas corporation ("NEWFIELD"), with offices at 1001 17th Street, Suite 2000, Denver, Colorado 80202, covering certain lands, (the "Lands") situated in Duchesne County, Utah described as follows:

Township 4 South, Range 1 East Section 19 S/2

Uintah County, Utah being 327.61 acres, more or less

For and in consideration of the sum of ten dollars (\$10.00), and other valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the undersigned hereby agree to the terms and provisions set forth as follows:

1. Compensation for Well; Release of All Claims

NEWFIELD shall pay to Surface Owner the sum as set forth in and according to the terms of that certain Letter Agreement for Easement, Right-of Way and Surface Use by and between Surface Owner and NEWFIELD, dated October 28th, 2009, as full payment and satisfaction for any and all detriment, depreciation, injury or damage of any nature to the Lands or growing crops thereon that may occur as a result of NEWFIELD's drilling or completion operations or its continuing activities for the production or transportation of oil, gas, or other hydrocarbons or products associated with the foregoing including, but not limited to, surface use, access, pipelines, gathering lines, pipeline interconnections, and any and all other reasonable or customary uses of land related to said operations or activities.

2. Grant of Right of Way and Easement

Surface Owner hereby grants, bargains, leases, assigns, and conveys to NEWFIELD an easement and right-of-way for the purpose of construction, using and maintaining access roads, locations for surface equipment and subsurface gathering lines for each well drilled upon the Lands, pipelines, and pipeline interconnections for two years from date of this agreement and so long thereafter as NEWFIELD's oil and gas leases remain in effect.

This Agreement shall be binding upon the respective heirs, executors, administrators, successors, and assigns of the undersigned. This agreement replaces and supersedes any and all prior agreements covering the lands described herein.

These Parties hereto have executed this document effective as of the day first above written.

NEWFIELD PRODUCTION COMPANY

Roland James Oman

Oman Uintah Farm, LLC

Daniel W. Shewmake

Vice President - Development

SURFACE OWNER

man Uintah Farm, LLC

STATE OF UTAH	
COUNTY OF SaltLake)	- vŽ
This instrument was acknowledged before me James Oman.	this day of November, 2009 by Roland
Witness my hand and official seal.	Line fort
My commission expires $9/8/2013$	Notary Public TIM EATON NOTARY PUBLIC-STATE OF UTAH SCOMMISSION# 580019 COMM END 03.50.0015
STATE OF UTAH) COUNTY OF Salt Lake)	
This instrument was acknowledged before me Oman.	this day of Nucley, 2009 by Yvonne T.
Witness my hand and official seal.	1.11
My commission expires $9/8/2013$	Notary Public THM EATON NOTARY PUBLIC-STATE CS UTAN COMMISSIONE 880019 COMM. EXP. 09-08-2013
STATE OF COLORADO))ss COUNTY OF DENVER)	
COUNTY OF DENVER	
This instrument was acknowledged before me Daniel W. Shewmake , as Vice President – Develops corporation, on behalf of the corporation.	this, 2009 by ment of Newfield Production Company, a Texas
Witness my hand and official seal.	
	Notary Public
My commission expires	

NEWFIELD PRODUCTION COMPANY FIRST CHRISTIAN 11-19-4-1E NE/SW SECTION 19, T4S, R1E UINTAH COUNTY, UTAH

TEN POINT DRILLING PROGRAM

GEOLOGIC SURFACE FORMATION:

Uinta formation of Upper Eocene Age

ESTIMATED TOPS OF IMPORTANT GEOLOGIC MARKERS: 2.

Uinta	0' -	2,000
Green River		2,000°
Wasatch		6,730'
Proposed TD		6,999'

ESTIMATED DEPTHS OF ANTICIPATED WATER, OIL, GAS OR MINERALS: 3.

2,000' - 6,730'Green River Formation (Oil)

Fresh water may be encountered in the Uinta Formation, but would not be expected below about 350'. All water shows and water bearing geologic units shall be reported to the geologic and engineering staff of the Vernal Office prior to running the next string of casing or before plugging orders are requested. All water shows must be reported within one (1) business day after being encountered.

All usable (<10,000 PPM TDS) water and prospectively valuable minerals (as described by BLM at onsite) encountered during drilling will be recorded by depth and adequately protected. This information shall be reported to the Vernal Office.

Detected water flows shall be sampled, analyzed, and reported to the geologic & engineering staff of the Vernal Office. The office may request additional water samples for further analysis. Usage of the State of Utah form Report of Water Encountered is acceptable, but not required.

Date Sampled

The following information is requested for water shows and samples where applicable:

Location & Sampled Interval Temperature Flow Rate рΗ Hardness Dissolved Calcium (Ca) (mg/l) Water Classification (State of Utah) Dissolved Sodium (Na) (mg/l) Dissolved Iron (Fe) (ug/l) Dissolved Carbonate (CO₃) (mg/l) Dissolved Magnesium (Mg) (mg/l) Dissolved Chloride (Cl) (mg/l) Dissolved Bicarbonate (NaHCO₃) (mg/l) Dissolved Total Solids (TDS) (mg/l) Dissolved Sulfate (SO₄) (mg/l)

Ten Point Well Program & Thirteen Point Well Program

Page 2 of 10

4. PROPOSED CASING PROGRAM

a. Casing Design: First Christian 11-19-4-1E

Size	Interval		Weight	Grade	Coupling	Design Factors			
	Тор	Bottom	vveignt	Grade	Coupling	Burst	Collapse	Tension	
Surface casing		4001	24.0	1.55	CTC	2,950	1,370	244,000	
8-5/8"	0'	400'	24.0	J-55	STC	13,15	10,77	25.42	
Prod casing				1.55	1.70	4,810	4,040	217,000	
5-1/2"	0'	6,999'	15,5	J-55	LTC	2.16	1,81	2.00	

Assumptions:

- 1) Surface casing max anticipated surface press (MASP) = Frac gradient gas gradient
- 2) Prod casing MASP (production mode) = Pore pressure gas gradient
- 3) All collapse calculations assume fully evacuated casing w/ gas gradient
- 4) All tension calculations assume air weight

Frac gradient at surface casing shoe = 13.0 ppg
Pore pressure at surface casing shoe = 8.33 ppg
Pore pressure at prod casing shoe = 8.33 ppg
Gas gradient = 0.115 psi/ft

All casing shall be new or, if used, inspected and tested. Used casing shall meet or exceed API standards for new casing.

All casing strings shall have a minimum of 1 (one) centralizer on each of the bottom three (3) joints.

b. Cementing Design: First Christian 11-19-4-1E

STATE OF THE REST		PARTY DESCRIPTION OF THE REST	Sacks	ОН	Weight	Yield	
Job	Fill	Description	ft ³	Excess*	(ppg)	(ft³/sk)	
	4001	01 0/ 20/ 0-01	183	30%	15.8	1.17	
Surface casing 400'		Class G w/ 2% CaCl	215	30 70	13.0	1.17	
Prod casing	4.000	Prem Lite II w/ 10% gel + 3%	345	30%	11.0	3.26	
Lead	4,999'	KCI	1126	3070	11.0	0.20	
Prod casing	2,000'	50/50 Poz w/ 2% gel + 3%	363	30%	14.3	1.24	
Tail	2,000	KCI	451		1, 1.0		

- *Actual volume pumped will be 15% over the caliper log
- Compressive strength of lead cement: 1800 psi @ 24 hours, 2250 psi @ 72 hours
- Compressive strength of tail cement: 2500 psi @ 24 hours

Hole Sizes: A 12-1/4" hole will be drilled for the 8-5/8" surface casing. A 7-7/8" hole will be drilled for the 5-1/2" production casing.

The 8-5/8" surface casing shall in all cases be cemented back to surface. In the event that during the primary surface cementing operation the cement does not circulate to surface, or if the cement level should fall back more than 8 feet from surface, then a remedial surface cementing operation shall be performed to insure adequate isolation and stabilization of the surface casing.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Ten Point Well Program & Thirteen Point Well Program Page 3 of 10

The operator's minimum specifications for pressure control equipment are as follows:

An 8" Double Ram Hydraulic unit with a closing unit will be utilized. Function test of BOP's will be check daily.

Refer to Exhibit C for a diagram of BOP equipment that will be used on this well.

6. TYPE AND CHARACTERISTICS OF THE PROPOSED CIRCULATION MUDS:

From surface to ±400 feet will be drilled with an air/mist system. The air rig is equipped with a 6 ½" blooie line that is straight run and securely anchored. The blooie line is used with a discharge less than 100 ft from the wellbore in order to minimize the well pad size. The blooie line is not equipped with an automatic igniter or continuous pilot light and the compressor is located less than 100 ft from the well bore due to the low possibility of combustion with the air dust mixture. The trailer mounted compressor (capacity of 2000 CFM) has a safety shut-off valve which is located 15 feet from the air rig. A truck with 70 bbls of water is on stand by to be used as kill fluid, if necessary. From about ±400 feet to TD, a fresh water system will be utilized. Clay inhibition and hole stability will be achieved with a KCl substitute additive. This additive will be identified in the APD and reviewed to determine if the reserve pit shall be lined. This fresh water system will typically contain Total Dissolved Solids (TDS) of less than 3000 PPM. Anticipated mud weight is 8.4 lbs/gal. If necessary to control formation fluids or pressure, the system will be weighted with the addition of bentonite gel, and if pressure conditions warrant, with barite

No chromate additives will be used in the mud system on Federal and/or Indian lands without prior BLM approval to ensure adequate protection of fresh aquifers.

No chemicals subject to reporting under SARA Title III in an amount equal to or greater than 10,000 pounds will be used, produced, stored, transported, or disposed of annually in association with the drilling, testing, or completing of this well. Furthermore, no extremely hazardous substances, as defined in 40 CFR 355, in threshold planning quantities, will be used, produced, stored, transported, or disposed of in association with the drilling, testing, or completing of this well.

Hazardous substances specifically listed by the EPA as a hazardous waste or demonstrating a characteristic of a hazardous waste will not be used in drilling, testing, or completion operations.

Newfield Production will **visually** monitor pit levels and flow from the well during drilling operations.

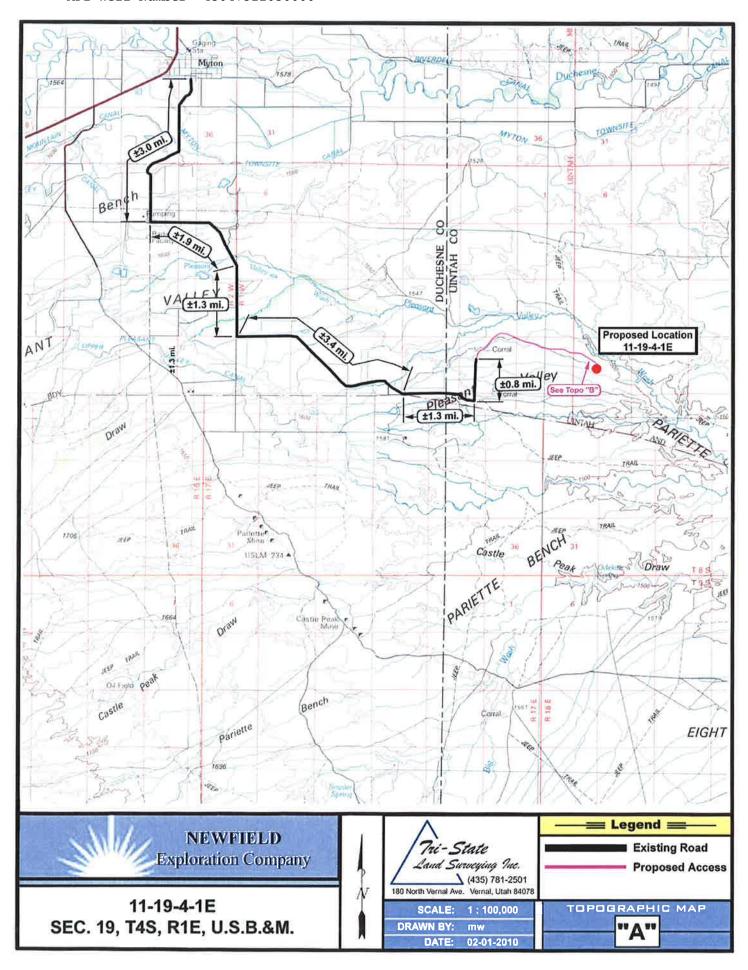
7. AUXILIARY SAFETY EQUIPMENT TO BE USED:

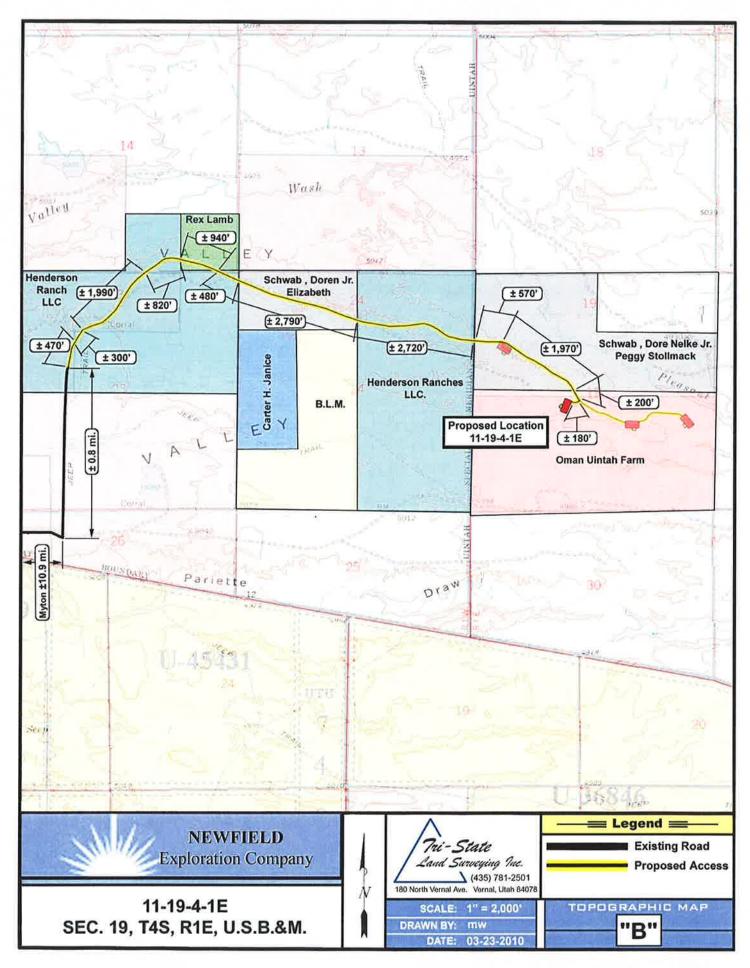
Auxiliary safety equipment will be a Kelly Cock, bit float, and a TIW valve with drill pipe threads.

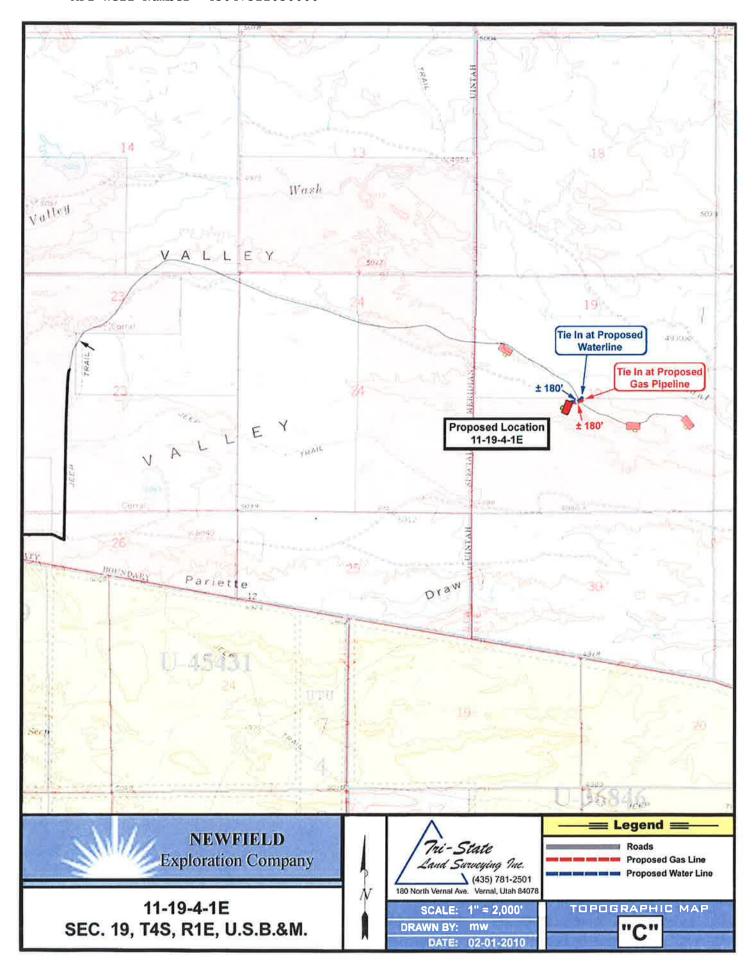
8. TESTING, LOGGING AND CORING PROGRAMS:

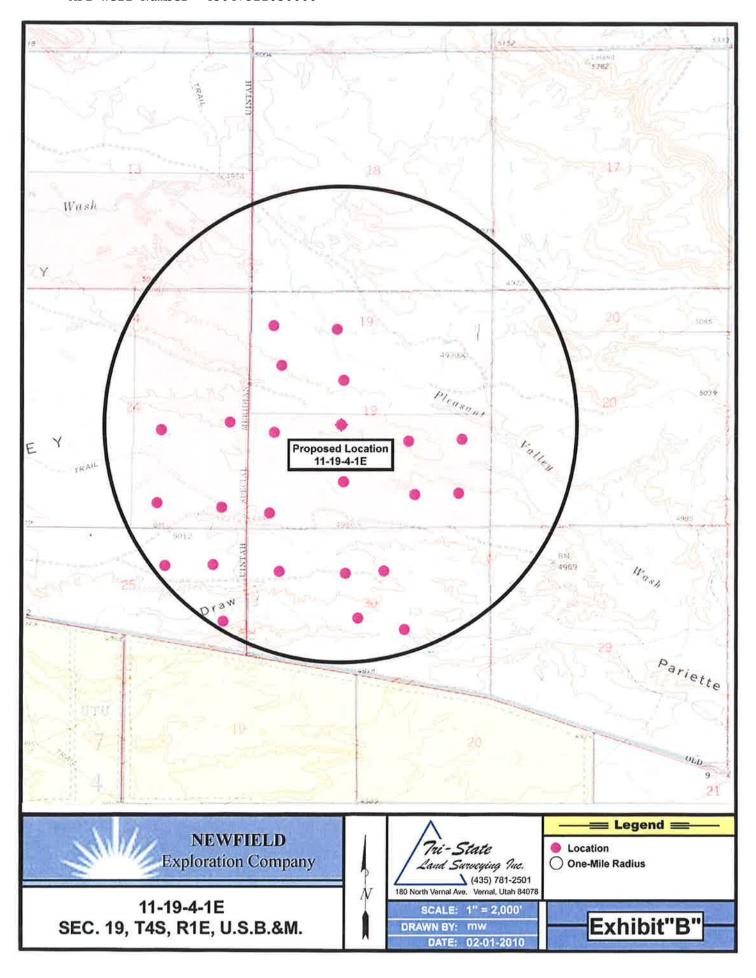
The logging program will consist of a Dual Induction, Gamma Ray and Caliper log from TD to base of surface casing @ 400' +/-, and a Compensated Neutron-Formation Density Log from TD to 3500' +-. A cement bond log will be run from PBTD to cement top. No drill stem testing or coring is planned for this well.

9. ANTICIPATED ABNORMAL PRESSURE OR TEMPERATURE:


No abnormal temperatures or pressures are anticipated. No hydrogen sulfide has been encountered or is known to exist from previous drilling in the area at this depth. Maximum anticipated


Ten Point Well Program & Thirteen Point Well Program Page 4 of 10


bottomhole pressure will approximately equal total depth in feet multiplied by a 0.433 psi/foot gradient.


10. ANTICIPATED STARTING DATE AND DURATION OF THE OPERATIONS:

It is anticipated that the drilling operations will commence the second quarter of 2011, and take approximately seven (7) days from spud to rig release.

NEWFIELD EXPLORATION

USGS Myton SW (UT) SECTION 19 T4S, R1E 11-19-4-1E

Wellbore #1

Plan: Design #1

Standard Planning Report

02 December, 2010

PayZone Directional Services, LLC.

Planning Report

Database: Company: Project: Sita: Well:

EDM 2003,21 Single User Db **NEWFIELD EXPLORATION** USGS Myton SW (UT) SECTION 19 T4S, R1E

11-19-4-1E Wellbore: Wellbore #1 Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well 11-19-4-1E

11-19-4-1E @ 5001.0ft (Newfield Rig) 11-19-4-1E @ 5001.0ft (Newfield Rig)

Minimum Curvature

Project USGS Myton SW (UT), DUCHESNE COUNTY, UT, USA

Map System: Geo Datum:

US State Plane 1983

North American Datum 1983

System Datum:

Mean Sea Level

Map Zone:

Well

Utah Central Zone

Site

SECTION 19 T4S, R1E

Site Position: From:

Мар

Northing: Easting:

7,216,400.00 ft 2,061,000.00 ft Latitude: Longitude: 40° 7' 16.243 N

Position Uncertainty:

+N/-S

Slot Radius:

11-19-4-1E, SHL: LAT 40 07 10.46 LONG: -109 55 41.86

-592.3 ft

Grid Convergence:

109° 59' 45,328 W 0.96°

0.0 ft

7,216,140.11 ft

Latitude:

40° 7' 10.460 N

Position Uncertainty

Well Position

+E/-W 18,912.3 ft 0.0 ft Easting: Wellhead Elevation:

Northing:

2,079,919.73 ft 5,001.0 ft Longitude: Ground Level: 109° 55' 41.860 W 4,989.0 ft

Wellbore	Wellbore #1				
Magnetics	Model Name	Sample Date	Declination (°)	Dip Angle	Field Strength (nT)
	IGRF2010	2010/12/02	11.34	65.90	52,387

Design Des	ign #1				
Audit Notes:					
Version:	Phase:	PROTOTYPE	Tie On Depth:	0.0	
Vertical Section:	Depth From (TVD) (ft)	+N/-S (ft)	+E/-W (ft)	Direction (°)	
	6,200.0	0,0	0.0	165.78	

lan Sections										
Measured Depth (ft)	Inclination (°)	Azimuth	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
600.0	0.00	0.00	600.0	0.0	0.0	0.00	0.00	0.00	0.00	
859-1	3.89	165.78	858.9	-8.5	2.2	1.50	1.50	0.00	165.78	
6,212.5	3.89	165.78	6,200.0	-360.3	91.3	0.00	0.00	0.00	0.00	11-19-4-1E TGT
6,999.3	3.89	165.78	6,985.0	-412.0	104.4	0.00	0.00	0.00	0.00	

PayZone Directional Services, LLC.

Planning Report

Database: Company: Project: Site: EDM 2003,21 Single User Db NEWFIELD EXPLORATION USGS Myton SW (UT) SECTION 19 T4S, R1E

 Weil:
 11-19-4-1E

 Weilbore:
 Wellbore #1

 Design:
 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well 11-19-4-1E

11-19-4-1E @ 5001.0ft (Newfield Rig) 11-19-4-1E @ 5001.0ft (Newfield Rig)

True

Minimum Curvature

Design:	Design #1								
Planned Survey									
Measured Depth (ft)	Inclination	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0,0	0.00	0.00	0,00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500,0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
		165.78	700.0	-1.3	0.3	1,3	1.50	1,50	0.00
700.0	1.50	165.78	799.9	-5.1	1,3	5.2	1.50	1.50	0.00
0,008	3.00					8.8		1.50	0.00
859.1	3,89	165.78	858.9	-8.5	2,2	0.0	1.50	1,50	0.00
900.0	3.89	165.78	899.7	-11.2	2.8	11.6	0.00	0.00	0.00
1,000.0	3.89	165.78	999.5	-17.8	4.5	18.3	0.00	0.00	0.00
1,100.0	3.89	165.78	1,099.2	-24.3	6.2	25.1	0.00	0.00	0.00
1,200.0	3.89	165.78	1,199.0	-30.9	7.8	31.9	0.00	0.00	0.00
1,300.0	3.89	165.78	1,298.8	-37.5	9.5	38.7	0.00	0.00	0.00
1,300.0	3,03	103.70							
1,400.0	3.89	165.78	1,398.6	-44.1	11.2	45.4	0.00	0.00	0.00
1,500.0	3.89	165.78	1,498.3	-50.6	12,8	52.2	0.00	0.00	0.00
1,600.0	3.89	165.78	1,598.1	-57.2	14.5	59.0	0.00	0.00	0.00
1,700.0	3.89	165.78	1,697.9	-63.8	16.2	65.8	0.00	0.00	0.00
1,800.0	3.89	165.78	1,797.6	-70.3	17.8	72.6	0.00	0.00	0.00
1,000.0	5.05	105.76	1,707.0						
1,900.0	3.89	165.78	1,897.4	-76.9	19.5	79.3	0.00	0.00	0.00
2,000.0	3.89	165.78	1,997.2	-83.5	21.2	86.1	0.00	0.00	0.00
2,100.0	3.89	165.78	2,096.9	-90.0	22.8	92.9	0.00	0.00	0.00
2,200.0	3.89	165.78	2,196.7	-96.6	24.5	99.7	0.00	0.00	0.00
2,300.0	3.89	165.78	2,296.5	-103.2	26.1	106.5	0.00	0.00	0.00
2,400.0	3.89	165.78	2,396.3	-109.8	27.8	113.2	0.00	0.00	0.00
2,500.0	3.89	165.78	2,496.0	-116.3	29.5	120.0	0.00	0.00	0.00
2,600.0	3.89	165.78	2,595.8	-122,9	31,1	126.8	0.00	0.00	0.00
2,700.0	3.89	165.78	2,695.6	-129.5	32.8	133,6	0.00	0,00	0.00
2,800.0	3.89	165,78	2,795.3	-136.0	34.5	140.3	0.00	0.00	0.00
					20.4	447.4	0.00	0.00	0.00
2,900.0	3.89	165.78	2,895.1	-142.6	36.1	147.1	0.00	0.00	0.00
3,000.0	3.89	165.78	2,994.9	-149.2	37.8	153.9	0.00	0.00	0.00
3,100.0	3.89	165.78	3,094.6	-155.8	39.5	160.7	0.00	0.00	0.00
3,200.0	3.89	165.78	3,194.4	-162.3	41.1	167.5	0.00	0.00	0.00
3,300.0	3.89	165.78	3,294.2	-168.9	42.8	174.2	0.00	0.00	0.00
		405.70	0.004.0	475.5	44.5	404.0	0.00	0.00	0.00
3,400.0	3.89	165.78	3,394.0	-175.5	44.5	181.0	0.00		
3,500.0	3.89	165.78	3,493.7	-182.0	46.1	187.8	0.00	0.00	0.00
3,600.0	3.89	165.78	3,593.5	-188.6	47.8	194.6	0.00	0,00	0.00
3,700.0	3.89	165.78	3,693.3	-195.2	49.5	201.3	0.00	0.00	0.00
3,800.0	3.89	165.78	3,793.0	-201.7	51.1	208.1	0.00	0.00	0.00
2 000 0	3.89	165.78	3,892.8	-208.3	52.8	214.9	0.00	0.00	0.00
3,900.0									
4,000.0	3.89	165.78	3,992.6	-214.9	54.5	221.7	0.00	0.00	0.00
4,100.0	3,89	165.78	4,092.3	-221.5	56.1	228.5	0.00	0.00	
4,200.0	3.89	165.78	4,192.1	-228.0	57.8	235.2	0.00	0.00	0.00
4,300.0	3.89	165.78	4,291.9	-234.6	59.5	242.0	0.00	0.00	0.00
4,400.0	3.89	165.78	4,391.7	-241.2	61.1	248.8	0.00	0.00	0.00
					62.8	255.6	0.00	0.00	0.00
4,500.0	3.89	165.78	4,491.4	-247.7					0.00
4,600.0	3.89	165.78	4,591.2	-254.3	64.4	262.3	0.00	0.00	
4,700.0	3.89	165.78	4,691.0	-260.9	66.1	269.1	0.00	0.00	0.00
4,800.0	3.89	165.78	4,790.7	-267.5	67.8	275.9	0.00	0.00	0.00
4,900.0	3.89	165.78	4,890.5	-274.0	69.4	282.7	0.00	0.00	0.00
	3.89	165.78	4,990.3	-280.6	71.1	289.5	0.00	0.00	0.00
5,000.0			•		72.8	296.2	0.00	0.00	0.00
5,100.0	3.89	165.78	5,090.0	-287.2					
5,200.0	3.89	165.78	5,189.8	-293.7	74.4	303.0	0.00	0.00	0.00

PayZone Directional Services, LLC.

Planning Report

Database: Company: Project: Site:

Well:

Wellbore:

Design:

EDM 2003.21 Single User Db NEWFIELD EXPLORATION USGS Myton SW (UT) SECTION 19 T4S, R1E

11-19-4-1E Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well 11-19-4-1E

11-19-4-1E @ 5001.0ft (Newfield Rig) 11-19-4-1E @ 5001.0ft (Newfield Rig)

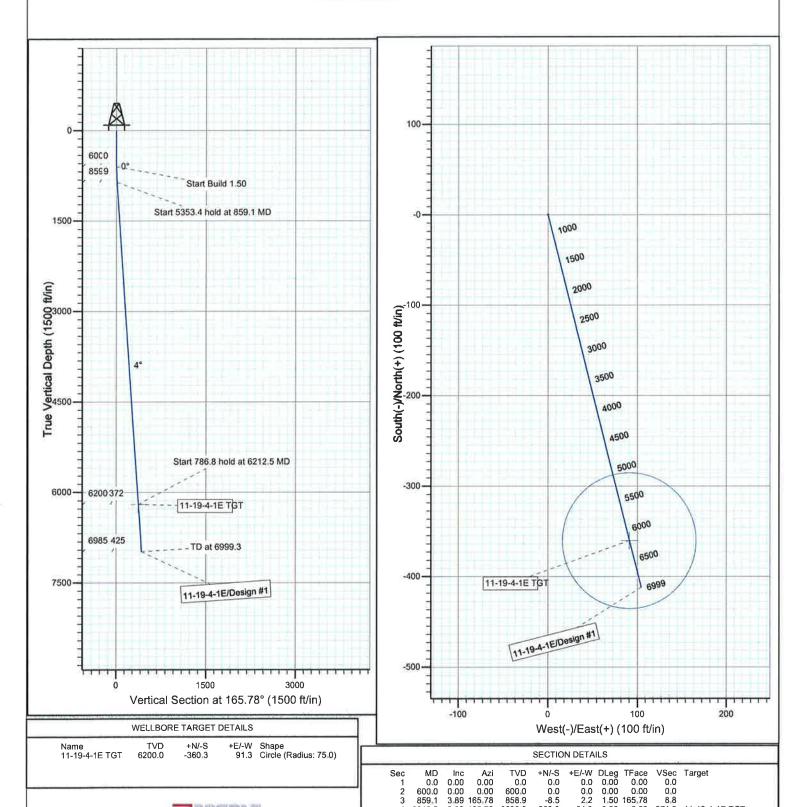
True

Minimum Curvature

Measured Depth (ft)	Inclination	Azimuth (°)	Vertical Depth (ft)	+NV-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
									كالكالم
5,300.0	3.89	165.78	5,289.6	-300.3	76.1	309,8	0.00	0.00	0.00
5,400.0	3.89	165.78	5,389.4	-306,9	77.8	316.6	0.00	0.00	0.00
5,500.0	3.89	165.78	5,489.1	-313.4	79.4	323.4	0.00	0.00	0.00
5,600.0	3,89	165.78	5,588.9	-320.0	81.1	330.1	0.00	0.00	0.00
5,700.0	3,89	165.78	5,688.7	-326.6	82.8	336.9	0.00	0.00	0.00
5,800.0	3.89	165.78	5,788.4	-333,2	84.4	343.7	0.00	0.00	0.00
5,900.0	3,89	165.78	5,888.2	-339.7	86.1	350,5	0.00	0.00	0.00
6,000.0	3.89	165.78	5,988.0	-346.3	87.8	357.2	0.00	0.00	0.00
6,100.0	3.89	165.78	6,087.7	-352.9	89.4	364.0	0.00	0.00	0.00
6,200.0	3.89	165.78	6,187,5	-359.4	91.1	370.8	0.00	0,00	0.00
6,212.5	3.89	165.78	6,200.0	-360.3	91.3	371.6	0.00	0.00	0.00
11-19-4-1E T	GT								
6,300.0	3.89	165.78	6,287.3	-366.0	92.8	377.6	0.00	0.00	0.00
6,400.0	3,89	165.78	6,387.1	-372.6	94.4	384.4	0.00	0.00	0.00
6,500.0	3,89	165.78	6,486.8	-379.1	96.1	391.1	0.00	0.00	0.00
6,600.0	3,89	165.78	6,586.6	-385.7	97.7	397.9	0.00	0.00	0.00
6,700.0	3,89	165.78	6,686.4	-392.3	99.4	404.7	0.00	0.00	0.00
6,800.0	3.89	165.78	6,786.1	-398.9	101.1	411.5	0.00	0.00	0.00
6,900.0	3.89	165.78	6,885.9	-405.4	102.7	418.2	0.00	0.00	0.00

Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir.	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (ft)	Easting (ft)	Latitude	Longitude
11-19-4-1E TGT - plan hits target - Circle (radius 75.0)	0.00	0.00	6,200.0	-360.3	91.3	7,215,781.51	2,080,017.34	40° 7' 6.899 N	109° 55′ 40.685 W

Project: USGS Myton SW (UT) Site: SECTION 19 T4S, R1E


Well: 11-19-4-1E Wellbore: Wellbore #1 Design: Design #1

Azimuths to True North Magnetic North: 11.34°

Magnetic Field Strength: 52387.0snT Dip Angle: 65.90° Date: 2010/12/02 Model: IGRF2010

KOP @ 600' DOGLEG RATE 1.5 DEG/100 TARGET RADIUS IS 75'

-360.3 -412.0

6200.0

3.89 165.78

3.89 165.78 6985.0

6999.3

91.3 0.00 104.4 0.00 0.00 371.6 0.00 425.0 11-19-4-1E TGT

API Well Number: 43047511030000 Ten Point Well Program & Thirteen Point Well Program Page 5 of 10

NEWFIELD PRODUCTION COMPANY FIRST CHRISTIAN 11-19-4-1E NE/SW SECTION 19, T4S, R1E UINTAH COUNTY, UTAH

THIRTEEN POINT SURFACE PROGRAM

1. EXISTING ROADS

See attached Topographic Map "A"

To reach Newfield Production Company well location site First Christian 11-19-4-1E located in the NE¼ SW¼ Section 19, T4S, R1E, S.L.B. & M., Uintah County, Utah:

Proceed in a southwesterly direction out of Myton, approximately 3.0 miles to it's junction with an existing road to the east; proceed in a southeasterly direction approximately 3.2 miles to it's junction with an existing road to the east; proceed southeasterly approximately 4.7 miles to it's junction with an existing road to the north; proceed northerly approximately 0.8 miles to it's junction with the beginning of the proposed access road; proceed along the proposed access road approximately 13,430' to the proposed well location.

The highways mentioned in the foregoing paragraph are bituminous surfaced roads to the point where Highway 216 exists to the South, thereafter the roads are constructed with existing materials and gravel. The highways are maintained by Utah State road crews. All other roads are maintained by County crews.

The aforementioned dirt oil field service roads and other roads in the vicinity are constructed out of existing native materials that are prevalent to the existing area they are located in and range from clays to a sandy-clay shale material.

The roads for access during the drilling, completion and production phase will be maintained at the standards required by the State of Utah, or other controlling agencies. This maintenance will consist of some minor grader work for smoothing road surfaces and for snow removal.

2. PLANNED ACCESS ROAD

Approximately 13,430' of access road is proposed. See attached Topographic Map "B".

The proposed access road will be an 18' crown road (9' either side of the centerline) with drainage ditches along either side of the proposed road whether it is deemed necessary in order to handle any run-off from normal meteorological conditions that are prevalent to this area. The maximum grade will be less than 8%.

There will be no culverts required along this access road. There will be barrow ditches and turnouts as needed along this road.

There are no fences encountered along this proposed road. There will be no new gates or cattle guards required.

All construction material for this access road will be borrowed material accumulated during construction of the access road.

API Well Number: 43047511030000 Ten Point Well Program &

Thirteen Point Well Program

Page 6 of 10

3. LOCATION OF EXISTING WELLS

Refer to EXHIBIT B.

4. LOCATION OF EXISTING AND/OR PROPOSED FACILITIES

There are no existing facilities that will be used by this well.

It is anticipated that this well will be a producing oil well.

Upon construction of a tank battery, the well pad will be surrounded by a dike of sufficient capacity to contain at minimum 110% of the largest tank volume within the facility battery.

Tank batteries will be built to State specifications,

All permanent (on site for six (6) months or longer) structures, constructed or installed (including pumping units), will be painted a flat, non-reflective, earth tone color to match one of the standard environmental colors, as determined by the Rocky Mountain Five State Interagency Committee. All facilities will be painted within six months of installation.

5. LOCATION AND TYPE OF WATER SUPPLY

Newfield Production will transport water by truck for drilling purposes from the following water sources:

Johnson Water District Water Right: 43-7478

Neil Moon Pond

Water Right: 43-11787

Newfield Collector Well

Water Right: 41-3530 (A30414DV, contracted with the Duchesne County Conservancy District).

There will be no water well drilled at this site

6. SOURCE OF CONSTRUCTION MATERIALS

All construction material for this location shall be borrowed material accumulated during construction of the location site and access road.

A mineral material application is not required for this location.

7. METHODS FOR HANDLING WASTE DISPOSAL

A small reserve pit (90' x 40' x 8' deep, or less) will be constructed from native soil and clay materials. The reserve pit will receive the processed drill cutting (wet sand, shale & rock) removed from the wellbore. Any drilling fluids, which do accumulate in the pit as a result of shale-shaker carryover, cleaning of the sand trap, etc., will be promptly reclaimed. All drilling fluids will be fresh water based, typically containing Total Dissolved Solids of less than 3000 PPM. No potassium chloride, chromates, trash, debris, nor any other substance deemed hazardous will be placed in this pit. A 16 mil liner with felt will be required. Newfield requests approval that a flare pit be constructed and utilized on this location.

API Well Number: 43047511030000 Ten Point Well Program & Thirteen Point Well Program Page 7 of 10

A portable toilet will be provided for human waste.

A trash basket will be provided for garbage (trash) and hauled away to an approved disposal site at the completion of the drilling activities.

Immediately upon first production, all produced water will be confined to a steel storage tank. If the production water meets quality guidelines, it is transported to the Ashley, Monument Butte, Jonah, and Beluga water injection facilities by company or contract trucks. Subsequently, the produced water is injected into approved Class II wells to enhance Newfield's secondary recovery project.

Water not meeting quality criteria, is disposed at Newfield's Pariette #4 disposal well (Sec. 7, T9S R19E) or at State of Utah approved surface disposal facilities.

8. **ANCILLARY FACILITIES**:

There are no ancillary facilities planned for at the present time and none foreseen in the near future.

9. WELL SITE LAYOUT:

See attached Location Layout Sheet.

Fencing Requirements

All pits will be fenced according to the following minimum standards:

- a) A 39-inch net wire shall be used with at least one strand of barbed wire on top of the net.
- b) The net wire shall be no more than two (2) inches above the ground. The barbed wire shall be three (3) inches above the net wire. Total height of the fence shall be at least forty-two (42) inches.
- c) Corner posts shall be centered and/or braced in such a manner to keep tight at all times
- d) Standard steel, wood or pipe posts shall be used between the corner braces. Maximum distance between any two posts shall be no greater than sixteen (16) feet.
- e) All wire shall be stretched, by using a stretching device, before it is attached to the corner posts.

The reserve pit fencing will be on three (3) sides during drilling operations and on the fourth side when the rig moves off location. Pits will be fenced and maintained until cleanup.

10. PLANS FOR RESTORATION OF SURFACE:

a) Producing Location

Immediately upon well completion, the location and surrounding area will be cleared of all unused tubing, equipment, debris, material, trash and junk not required for production.

The reserve pit and that portion of the location not needed for production facilities/operations will be recontoured to the approximated natural contours. Weather

Ten Point Well Program & Thirteen Point Well Program Page 8 of 10

permitting, the reserve pit will be reclaimed within one hundred twenty (120) days from the date of well completion. Before any dirt work takes place, the reserve pit must have all fluids and hydrocarbons removed.

b) Dry Hole Abandoned Location

At such time as the well is plugged and abandoned, the operator shall submit a subsequent report of abandonment and the State of Utah will attach the appropriate surface rehabilitation conditions of approval.

11. SURFACE OWNERSHIP: Oman Uintah Farm, LLC.
See attached Memorandum of Surface Use Agreement.

12. OTHER ADDITIONAL INFORMATION:

Newfield Production Company requests 13,430' of planned access road to be granted. **Refer to Topographic Map "B".** Newfield Production Company requests 180' of surface gas line to be granted. Newfield Production Company requests 180' of buried water line to be granted.

It is proposed that the disturbed area will be 60' wide to allow for construction of the proposed access road, a 10" or smaller gas gathering line, a 3" poly fuel gas line, a buried 3" steel water injection line and a buried 3" poly water return line. The planned access road will consist of a 18' permanent running surface (9' either side of the centerline) crowned and ditched in order to handle any run-off from any precipitation events that are prevalent to this area. The maximum grade will be less than 8%. There will be no culverts required along this access road. There will be turnouts as needed along this road to allow for increases in potential traffic issues. There are no fences encountered along this proposed road. There will be no new gates or cattle guards required. All construction material for this access road will be borrowed material accumulated during construction of the access road.

Both the proposed surface gas and buried water lines will tie in to the existing pipeline infrastructure. Refer to Topographic Map "C." The proposed water pipelines will be buried in a 4-5' deep trench constructed with a trencher or backhoe for the length of the proposal. The equipment will run on the surface and not be flat bladed to minimize surface impacts to precious topsoil in these High Desert environments. If possible, all proposed surface gas pipelines will be installed on the same side of the road as existing gas lines. The construction phase of the planned access road, proposed gas lines and proposed water lines will last approximately (5) days.

In the event that the proposed well is converted to a water injection well, a Sundry Notice form will be applied for through the State of Utah DOGM.

- a) Newfield Production Company is responsible for informing all persons in the area who are associated with this project that they will be subject to prosecution for knowingly disturbing historic or archaeological sites, or for collecting artifacts. If historic or archaeological materials are uncovered during construction, Newfield is to immediately stop work that might further disturb such materials and contact the Authorized Officer.
- b) Newfield Production will control noxious weeds along rights-of-way for roads, pipelines, well sites or other applicable facilities. On State administered land it is required that a Pesticide Use Proposal shall be submitted and given approval prior to the application of herbicides or other possible hazardous chemicals.
- c) Drilling rigs and/or equipment used during drilling operations on this well site will not be stacked or stored on State Lands after the conclusion of drilling operations or at any other

API Well Number: 43047511030000 Ten Point Well Program & Thirteen Point Well Program Page 9 of 10

time without State authorization. However, if State authorization is obtained, it is only a temporary measure to allow time to make arrangements for permanent storage on commercial facilities.

Additional Surface Stipulations

All lease and/or unit operations will be conducted in such a manner that full compliance is made with all applicable laws and regulations, Onshore Oil and Gas Orders, the approved plan of operations and any applicable Notice to Lessees. A copy of these conditions will be furnished to the field representative to ensure compliance.

Hazardous Material Declaration

Newfield Production Company guarantees that during the drilling and completion of the First Christian 11-19-4-1E, Newfield will not use, produce, store, transport or dispose 10,000# annually of any of the hazardous chemicals contained in the Environmental Protection Agency's consolidated list of chemicals subject to reporting under Title III Superfund Amendments and Reauthorization Act (SARA) of 1986. Newfield also guarantees that during the drilling and completion of the First Christian 11-19-4-1E Newfield will use, produce, store, transport or dispose less than the threshold planning quantity (T.P.Q.) of any extremely hazardous substances as defined in 40 CFR 355.

A complete copy of the approved APD, if applicable, shall be on location during the construction of the location and drilling activities.

Newfield Production Company or a contractor employed by Newfield Production shall contact the State office at (801) 722-3417, 48 hours prior to construction activities.

The State office shall be notified upon site completion prior to moving on the drilling rig.

13. <u>LESSEE'S OR OPERATOR'S REPRENSENTATIVE AND CERTIFICATION:</u>

Representative

Name:

Tim Eaton

Address:

Newfield Production Company

Route 3, Box 3630 Myton, UT 84052

Telephone:

(435) 646-3721

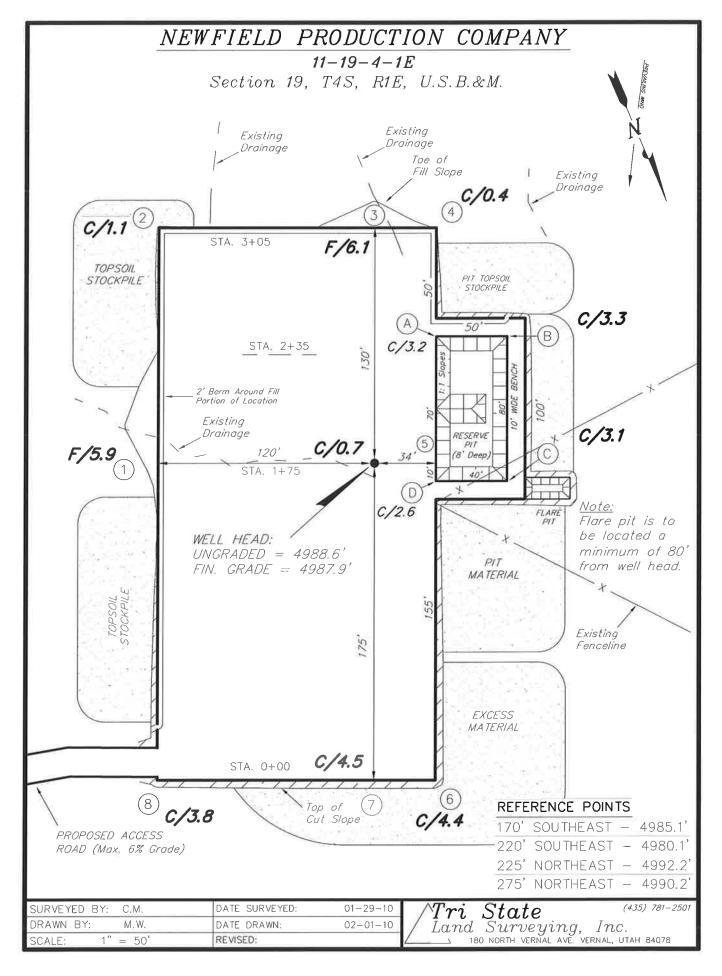
Certification

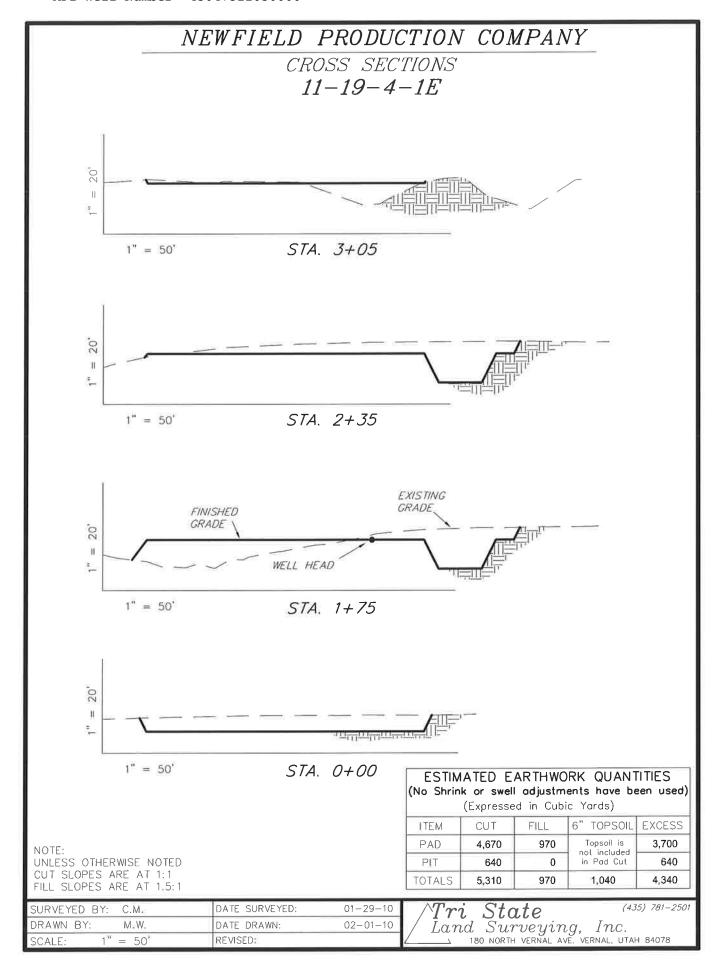
Please be advised that Newfield Production Company is considered to be the operator of well #11-19-4-1E, NE/SW Section 19, T4S, R1E, Uintah County, Utah and is responsible under the terms and conditions of the lease for the operations conducted upon the leased lands. Bond coverage is provided by Bond #B001834.

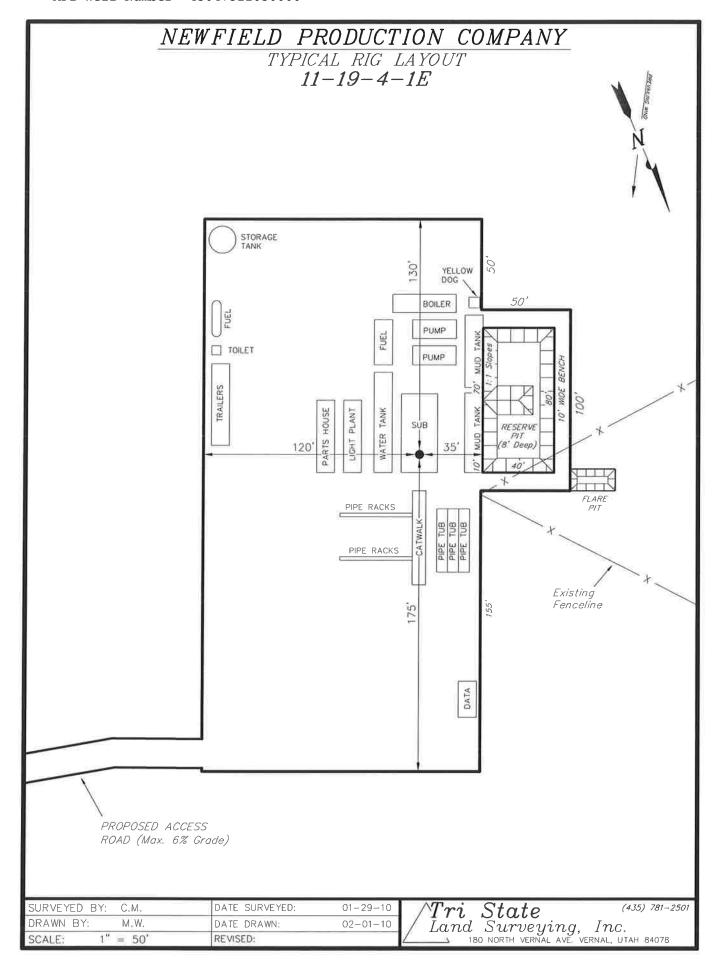
I hereby certify that the proposed drill site and access route have been inspected, and I am familiar with the conditions which currently exist; that the statements made in this plan are true and correct to the best of my knowledge; and that the work associated with the operations proposed here will be performed by Newfield Production Company and its contractors and subcontractors in

API Well Number: 43047511030000 Ten Point Well Program & Thirteen Point Well Program Page 10 of 10

conformity with this plan and the terms and conditions under which it is approved. This statement is subject to the provisions of the 18 U.S.C. 1001 for the filing of a false statement.

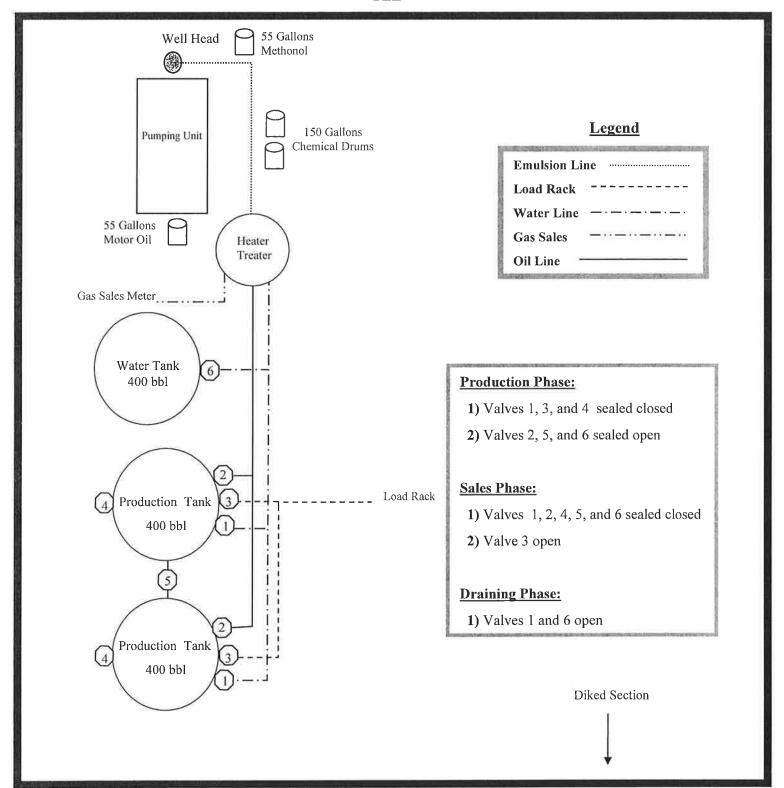

6/3/10


Date


Mandie Crozier

Regulatory Specialist

Newfield Production Company



API Well Number: 43047511030000 Newfield Production Company **Proposed Site Facility Diagram**

First Christian 11-19-4-1E NE/SW Sec. 19, T4S, R1E Uintah County, Utah

FEE

EXHIBIT D

Township 4 South, Range 1 East Section 19 S/2

Uintah County, Utah being 327.61 acres, more or less

ARCHAEOLOGICAL & PALEOTOLOGICAL REPORT WAIVER

For the above referenced location; Oman Uintah Farm, LLC, the Private Surface Owner. (Having a Surface Owner Agreement with Newfield Production Company)

Roland James and Yvonne T. Oman, representing this entity does agree to waive the request from the State of Utah and Bureau of Land Management for an Archaeological/Cultural and Paleotological Resource Survey for any wells covered by the Surface Use Agreement dated 10/28/09 between the above said private land owner and Newfield Production. This waiver hereby releases Newfield Production Company from this request.

Roland James Oman Date Oman Uintah Farm, LLC

Brad Mecham

Date

Newfield Production Company

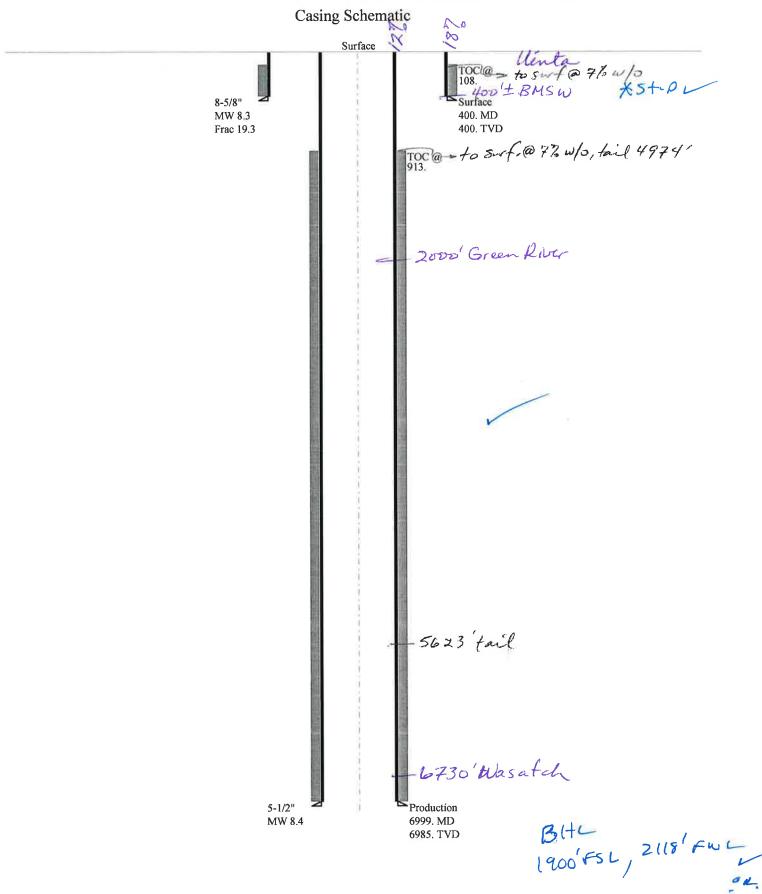
yonne T. Oman

Date

man Uintah Farm, LLC

BOPE REVIEW NEWFIELD PRODUCTION COMPANY irst Christian 11-19-4-1E 43047511030000

Well Name	NEWFIELD PRODUCTION COMPANY First Christian 11-19-4-1E 4304751				
String	Surf	Prod			
Casing Size(")	8.625	5.500			
Setting Depth (TVD)	400	7005			
Previous Shoe Setting Depth (TVD)	0	400			
Max Mud Weight (ppg)	8.3	8.4			
BOPE Proposed (psi)	500	2000			
Casing Internal Yield (psi)	2950	4810			
Operators Max Anticipated Pressure (psi)	3012	8.3			


Calculations	Surf String	8.625	"
Max BHP (psi)	.052*Setting Depth*MW=	173	
			BOPE Adequate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	Max BHP-(0.12*Setting Depth)=	125	YES air drill
MASP (Gas/Mud) (psi)	Max BHP-(0.22*Setting Depth)=	85	YES OK
			*Can Full Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe Max BHP22*(Setting Depth - Previous Shoe Depth)=		85	NO OK
Required Casing/BOPE Test Pressure=			psi
*Max Pressure Allowed @ Previous Casing Shoe=			psi *Assumes 1psi/ft frac gradient

Calculations	Prod String	5.500	"
Max BHP (psi)	.052*Setting Depth*MW=	3060	
			BOPE Adequate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	Max BHP-(0.12*Setting Depth)=	2219	NO
MASP (Gas/Mud) (psi)	Max BHP-(0.22*Setting Depth)=	1519	YES OK
			*Can Full Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe Max BHP22*(Setting Depth - Previous Shoe Depth)=		1607	NO Reasonable for area
Required Casing/BOPE Test Pressure=		2000	psi
*Max Pressure Allowed @ Previous Casing Shoe=			psi *Assumes 1psi/ft frac gradient

Calculations	String		"
Max BHP (psi)	Max BHP (psi) .052*Setting Depth*MW=		
			BOPE Adequate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	Max BHP-(0.12*Setting Depth)=		NO
MASP (Gas/Mud) (psi)	Max BHP-(0.22*Setting Depth)=		NO
			*Can Full Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe	Max BHP22*(Setting Depth - Previous Shoe Depth)=		NO
Required Casing/BOPE Test Pressure=			psi
*Max Pressure Allowed @	Previous Casing Shoe=		psi *Assumes 1psi/ft frac gradient

Calculations	String		"
Max BHP (psi)	.052*Setting Depth*MW=		
			BOPE Adequate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	Max BHP-(0.12*Setting Depth)=		NO
MASP (Gas/Mud) (psi)	Max BHP-(0.22*Setting Depth)=		NO
			*Can Full Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe	Max BHP22*(Setting Depth - Previous Shoe Depth)=		NO
Required Casing/BOPE Test Pressure=			psi
*Max Pressure Allowed @	Previous Casing Shoe=		psi *Assumes 1psi/ft frac gradient

43047511030000 First Christian 11-19-4-1E

Well name:

43047511030000 First Christian 11-19-4-1E

Operator:

NEWFIELD PRODUCTION COMPANY

String type:

Surface

Project ID: 43-047-51103

Location:

UINTAH COUNTY

Design parameters:		Minimum desig	n factors:	Environment:
Collapse		Collapse:		H2S considered?
Mud weight:	8.330 ppg	Design factor	1.125	Surface temperature:
Design is based on ev	acuated pipe.			Bottom hole temperatu

80 °F perature: 1.40 °F/100ft Temperature gradient: Minimum section length: 100 ft

Burst:

Design factor

1.00 Cement top: 108 ft

No

74 °F

Burst

Max anticipated surface

No backup mud specified,

pressure: Internal gradient: Calculated BHP

352 psi 0.120 psi/ft 400 psi

Tension:

8 Round STC: 1.80 (J) 1.70 (J) 8 Round LTC: 1.60 (J) Buttress:

1.50 (J) Premium: Body yield: 1.50 (B)

Tension is based on air weight. Neutral point: 350 ft Non-directional string.

Re subsequent strings:

Next setting depth: 6,985 ft Next mud weight: 8.400 ppg Next setting BHP: 3,048 psi 19.250 ppg Fracture mud wt: Fracture depth: 400 ft Injection pressure: 400 psi

Run	Segment		Nominal		End	True Vert	Measured	Drift	Est.
Seq	Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Cost
	(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(\$)
1	400	8.625	24.00	J-55	ST&C	400	400	7.972	2059
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension
Seq	Load	Strength	Design	Load	Strength	Design	Load	Strength	Design
- 34	(psi)	(psi)	Factor	(psi)	(psi)	Factor	(kips)	(kips)	Factor
1	173	1370	7.917	400	2950	7.38	9.6	244	25.42 J

Prepared

Helen Sadik-Macdonald Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: February 3,2011 Salt Lake City, Utah

Remarks:

Collapse is based on a vertical depth of 400 ft, a mud weight of 8.33 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Well name:

43047511030000 First Christian 11-19-4-1E

Operator:

NEWFIELD PRODUCTION COMPANY

String type:

Production

Project ID:

43-047-51103

Location:

UINTAH

COUNTY

Environment: Minimum design factors:

Collapse Collapse:

8.400 ppg Mud weight: Design is based on evacuated pipe.

Design factor 1,125 H2S considered?

No 74 °F Surface temperature: 172 °F Bottom hole temperature:

Temperature gradient:

1.40 °F/100ft

Minimum section length:

100 ft

Burst:

Design factor

1.00 Cement top: 913 ft

Burst

Max anticipated surface

No backup mud specified.

pressure: Internal gradient: Calculated BHP

Design parameters:

1,511 psi 0.220 psi/ft

3,048 psi

Tension:

8 Round LTC: Buttress:

Premium: Body yield:

Neutral point:

3048

8 Round STC:

1.80 (J) 1.80 (J) 1.60 (J) 1.50 (J) 1.60 (B)

Tension is based on air weight. 6,109 ft Directional well information:

Kick-off point Departure at shoe:

600 ft 425 ft 1.5 °/100ft

2.00 J

Maximum dogleg: 3.89° Inclination at shoe:

217

Run Segment Nominal End True Vert Measured Drift Est. Seq Length Size Weight Grade **Finish** Depth Depth Diameter Cost (ft) (in) (lbs/ft) (ft) (ft) (in) (\$) 1 6999 5.5 15.50 J-55 LT&C 6985 6999 4.825 24713 Collapse Collapse Collapse **Burst** Burst **Burst Tension Tension** Tension Run Strength Strength Design Load Design Load Design Load Strength Seq (kips) (psi) **Factor** (psi) **Factor** (kips) **Factor** (psi) (psi)

4810

1.58

108.3

Prepared

Helen Sadik-Macdonald Div of Oil, Gas & Mining

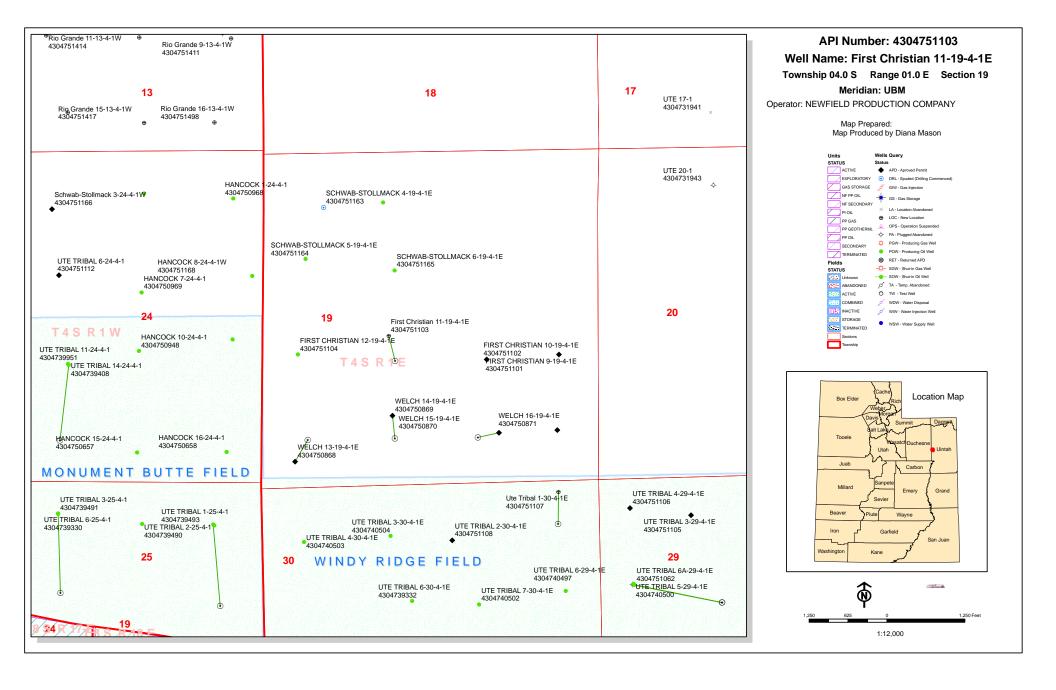
4040

1.326

Phone: 801 538-5357 FAX: 801-359-3940

Date: February 3,2011 Salt Lake City, Utah

Remarks:


1

3048

Collapse is based on a vertical depth of 6985 ft, a mud weight of 8.4 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

API Well Number: 43047511030000

ON-SITE PREDRILL EVALUATION

Utah Division of Oil, Gas and Mining

Operator NEWFIELD PRODUCTION COMPANY

Well Name First Christian 11-19-4-1E

API Number 43047511030000 APD No 2705 Field/Unit UNDESIGNATED

Location: 1/4,1/4 NESW **Sec** 19 **Tw** 4.0S **Rng** 1.0E 2312 FSL 2014 FWL

GPS Coord (UTM) Surface Owner Oman Uintah Farm, LLC

Participants

Floyd Bartlett (DOGM), Tim Eaton (Newfield Production).

Regional/Local Setting & Topography

The location is approximately 14.2 road miles southeast of Myton, UT in a sub-drainage of Pleasant Valley Wash which drains into the Pariette Draw drainage of Duchesne County. Both of these draws contain perennial streams somewhat consisting of irrigation runoff and seepage. Pariette Draw runs into the Green River approximately 6 miles downstream from Ouray, Utah and about 12 miles downstream from the location. Broad flats in Pleasant Valley frequently used for agriculture characterize the area. Flats are intersected by drainages with gentle to moderate side slopes. Access is by State and County and existing or planned oil field development roads. Approximately 180 feet of new construction across Oman's private land will be required to reach the location.

The proposed First Christian Church 11-19-4-1E oil well pad is laid out in a northerly direction. It is located north of the normal drilling window to avoid a steep swale and a constructed pond. It is primarily on a bench but does have several draws which extend away. Separate draws running east and north from the center stake, one in the southeast corner, and one running south from Location Corner 4 all will be filled during construction. An old fence corners within the site. It is no longer needed and does not have to be protected. Some old irrigation pipe risers are also in the general area but are no longer required. Maximum earth movement for the pad is a fill of 5.9 feet at Location Conner 1. The selected location should be suitable and stable for constructing the pad, drilling and operating the proposed well.

Roland Oman owns the surface of the location and surrounding area. A surface use agreement has been signed.

Surface Use Plan

Current Surface Use

Grazing Recreational Wildlfe Habitat

New Road
Miles

Well Pad

Src Const Material

Surface Formation

0.02 Width 204 Length 305 Onsite UNTA

Ancillary Facilities N

Waste Management Plan Adequate?

Environmental Parameters

Affected Floodplains and/or Wetlands N

Flora / Fauna

2/10/2011 Page 1

API Well Number: 43047511030000 In the area includes greasewood, curly mesquite, mat saltbrush, kochia weed, halogeton, poverty weed, hordium sp., giant whitetop, globemallow, Indian ricegrass, morning glory and annual weeds.

Cattle, deer, ducks, geese, small mammals and birds.

Deep gravely sandy loam.

Soil Type and Characteristics

Deep gravely sandy loam.

Erosion Issues N

Sedimentation Issues N

Site Stability Issues N

Drainage Diverson Required? N

Berm Required? Y

Erosion Sedimentation Control Required? N

Paleo Survey Run? N Paleo Potental Observed? N Cultural Survey Run? N Cultural Resources?

Reserve Pit

Site-Specific Factors	Site Ra	ınking	
Distance to Groundwater (feet)	25 to 75	15	
Distance to Surface Water (feet)	200 to 300	10	
Dist. Nearest Municipal Well (ft)	>5280	0	
Distance to Other Wells (feet)	300 to 1320	10	
Native Soil Type	Mod permeability	10	
Fluid Type	Fresh Water	5	
Drill Cuttings	Normal Rock	0	
Annual Precipitation (inches)		0	
Affected Populations			
Presence Nearby Utility Conduits	Not Present	0	
	Final Score	50	Sensitivity Level

Characteristics / Requirements

The reserve pit will be 40' x 80' x 8' deep located in an area of cut on the southwest side of the location. A pit liner is required. Newfield commonly uses a 16-mil liner.

Closed Loop Mud Required? N Liner Required? Y Liner Thickness 16 Pit Underlayment Required? Y

Other Observations / Comments

Evaluator	Date / Time
Floyd Bartlett	6/28/2010

2/10/2011 Page 2

API Well Number: 43047511030000

Application for Permit to Drill Statement of Basis

Utah Division of Oil, Gas and Mining

Page 1

APD No	API WellNo	Status	Well Type	Surf Owner	CBM
2705	43047511030000	LOCKED	OW	P	No
Operator	NEWFIELD PRODUCTION	COMPANY	Surface Owner-APD	Oman Uintah	Farm, LLC
Well Name	First Christian 11-19-4-1E		Unit		
Field	UNDESIGNATED		Type of Work	DRILL	
Location	NESW 19 4S 1E U 2	2312 FSL 2014 FV	WL GPS Coord (UTM)	591382E 44	41358N

Geologic Statement of Basis

2/10/2011

Newfield proposes to set 400' of surface casing at this location. The depth to the base of the moderately saline water at this location is estimated to be at a depth of 400'. A search of Division of Water Rights records shows no water wells within a 10,000 foot radius of the center of Section 19. The surface formation at this site is the Uinta Formation. The Uinta Formation is made up of interbedded shales and sandstones. The sandstones are mostly lenticular and discontinuous and should not be a significant source of useable ground water. The proposed casing and cement should adequately protect ground water in their area.

Brad Hill 7/6/2010
APD Evaluator Date / Time

Surface Statement of Basis

The location is approximately 14.2 road miles southeast of Myton, UT in a sub-drainage of Pleasant Valley Wash which drains into the Pariette Draw drainage of Duchesne County. Both of these draws contain perennial streams somewhat consisting of irrigation runoff and seepage. Pariette Draw runs into the Green River approximately 6 miles downstream from Ouray, Utah and about 12 miles downstream from the location. Broad flats in Pleasant Valley frequently used for agriculture characterize the area. Flats are intersected by drainages with gentle to moderate side slopes. Access is by State and County and existing or planned oil field development roads. Approximately 180 feet of new construction across Oman's private land will be required to reach the location.

The proposed First Christian Church 11-19-4-1E oil well pad is laid out in a northerly direction. It is located north of the normal drilling window to avoid a steep swale and a constructed pond. It is primarily on a bench but does have several draws which extend away. Separate draws running east and north from the center stake, one in the southeast corner, and one running south from Location Corner 4 all will be filled during construction. An old fence corners within the site. It is no longer needed and does not have to be protected. Some old irrigation pipe risers are also in the general area but are no longer required. Maximum earth movement for the pad is a fill of 5.9 feet at Location Conner 1. The selected location should be suitable and stable for constructing the pad, drilling and operating the proposed well.

Roland Oman owns the surface of the location and surrounding area. A surface use agreement has been signed. Mr. Oman was contacted by telephone and invited to the site visit. He originally planned to attend but telephoned to say he would not make it. The sites were reviewed with Mr. Lance Henderson, who farms the Oman property. He had no concerns. The minerals are FEE owned by another party but under lease to Newfield Production Company.

Floyd Bartlett 6/28/2010
Onsite Evaluator Date / Time

Conditions of Approval / Application for Permit to Drill
Category Condition

API Well Number: 43047511030000 Application for Permit to Drill **Statement of Basis**

Utah Division of Oil, Gas and Mining

A synthetic liner with a minimum thickness of 16 mils with a felt subliner shall be properly installed and maintained in the Pits

reserve pit.

2/10/2011

Surface The well site shall be bermed to prevent fluids from leaving the pad. The reserve pit shall be fenced upon completion of drilling operations. Surface

Page 2

WORKSHEET APPLICATION FOR PERMIT TO DRILL

APD RECEIVED: 6/3/2010 **API NO. ASSIGNED:** 43047511030000

WELL NAME: First Christian 11-19-4-1E

OPERATOR: NEWFIELD PRODUCTION COMPANY (N2695) PHONE NUMBER: 435 646-4825

CONTACT: Mandie Crozier

PROPOSED LOCATION: NESW 19 040S 010E Permit Tech Review:

▼
Permit Tech Review: ▼

SURFACE: 2312 FSL 2014 FWL Engineering Review:

BOTTOM: 1898 FSL 2112 FWL Geology Review:

COUNTY: UINTAH

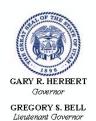
LATITUDE: 40.11947 LONGITUDE: -109.92761 UTM SURF EASTINGS: 591382.00 NORTHINGS: 4441358.00

FIELD NAME: UNDESIGNATED

LEASE TYPE: 4 - Fee

LEASE NUMBER: FEE PROPOSED PRODUCING FORMATION(S): GREEN RIVER

SURFACE OWNER: 4 - Fee COALBED METHANE: NO


RECEIVED AND/OR REVIEWED: LOCATION AND SITING: PLAT R649-2-3. Bond: STATE/FEE - B001834 **Unit:** R649-3-2. General **Potash** Oil Shale 190-5 Oil Shale 190-3 R649-3-3. Exception Oil Shale 190-13 **Drilling Unit** Board Cause No: Cause 266-03 Water Permit: 43-7478 **Effective Date:** 1/13/2011 **RDCC Review:** Siting: See Order **✓** Fee Surface Agreement **Intent to Commingle** ▼ R649-3-11. Directional Drill **Commingling Approved**

Comments: Presite Completed

Stipulations: 5 - Statement of Basis - bhill 15 - Directional - dmason

25 - Surface Casing - ddoucet

API Well No: 43047511030000

State of Utah

DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER
Executive Director

Division of Oil, Gas and Mining

JOHN R. BAZA
Division Director

Permit To Drill

Well Name: First Christian 11-19-4-1E

API Well Number: 43047511030000

Lease Number: FEE

Surface Owner: FEE (PRIVATE)

Approval Date: 2/10/2011

Issued to:

NEWFIELD PRODUCTION COMPANY, Rt 3 Box 3630, Myton, UT 84052

Authority:

Pursuant to Utah Code Ann. §40-6-1 et seq., and Utah Administrative Code R649-3-1 et seq., the Utah Division of Oil, Gas and Mining issues conditions of approval, and permit to drill the listed well. This permit is issued in accordance with the requirements of Cause 266-03. The expected producing formation or pool is the GREEN RIVER Formation(s), completion into any other zones will require filing a Sundry Notice (Form 9). Completion and commingling of more than one pool will require approval in accordance with R649-3-22.

Duration:

This approval shall expire one year from the above date unless substantial and continuous operation is underway, or a request for extension is made prior to the expiration date

General:

Compliance with the requirements of Utah Admin. R. 649-1 et seq., the Oil and Gas Conservation General Rules, and the applicable terms and provisions of the approved Application for permit to drill.

Conditions of Approval:

Compliance with the Conditions of Approval/Application for Permit to Drill outlined in the Statement of Basis (copy attached).

Surface casing shall be cemented to the surface.

In accordance with Utah Admin. R.649-3-11, Directional Drilling, the operator shall submit a complete angular deviation and directional survey report to the Division within 30 days following completion of the well.

Additional Approvals:

The operator is required to obtain approval from the Division of Oil, Gas and mining before performing any of the following actions during the drilling of this well:

- Any changes to the approved drilling plan contact Dustin Doucet
- Significant plug back of the well contact Dustin Doucet
- Plug and abandonment of the well contact Dustin Doucet

Notification Requirements:

API Well No: 43047511030000

The operator is required to notify the Division of Oil, Gas and Mining of the following actions during drilling of this well:

- Within 24 hours following the spudding of the well contact Carol Daniels OR
- submit an electronic sundry notice (pre-registration required) via the Utah Oil & Gas website at https://oilgas.ogm.utah.gov
- 24 hours prior to testing blowout prevention equipment contact Dan Jarvis
- 24 hours prior to cementing or testing casing contact Dan Jarvis
- Within 24 hours of making any emergency changes to the approved drilling program contact Dustin Doucet
- 24 hours prior to commencing operations to plug and abandon the well contact Dan Jarvis

Contact Information:

The following are Division of Oil, Gas and Mining contacts and their telephone numbers (please leave a voicemail message if the person is not available to take the call):

- Carol Daniels 801-538-5284 office
- Dustin Doucet 801-538-5281 office

801-733-0983 - after office hours

• Dan Jarvis 801-538-5338 - office

801-231-8956 - after office hours

Reporting Requirements:

All reports, forms and submittals as required by the Utah Oil and Gas Conservation General Rules will be promptly filed with the Division of Oil, Gas and Mining, including but not limited to:

- Entity Action Form (Form 6) due within 5 days of spudding the well
- Monthly Status Report (Form 9) due by 5th day of the following calendar month
- Requests to Change Plans (Form 9) due prior to implementation
- Written Notice of Emergency Changes (Form 9) due within 5 days
- Notice of Operations Suspension or Resumption (Form 9) due prior to implementation
- Report of Water Encountered (Form 7) due within 30 days after completion
- Well Completion Report (Form 8) due within 30 days after completion or plugging

Approved By:

For John Rogers Associate Director, Oil & Gas

BLM - Vernal Field Office - Notification Form

Operator Newfield Exploration Rig Name/# Ross 21 Submitted By Chevenne Bateman Phone Number 435-823-2419 Well Name/Number First Christian 11-19-4-1E Qtr/Qtr NE/SW Section 19 Township 4S Range 1E Lease Serial Number FEE API Number 43-047-51103 Spud Notice – Spud is the initial spudding of the well, not drilling out below a casing string. Date/Time 3/30/2011 8:00 AM \bowtie PM \bowtie Casing – Please report time casing run starts, not cementing times. Surface Casing **Intermediate Casing Production Casing** Liner Other Date/Time <u>3/30/2011</u> <u>2:00PM</u> AM PM BOPE Initial BOPE test at surface casing point BOPE test at intermediate casing point 30 day BOPE test Other Date/Time _____ AM PM Remarks

ADDRESS: RT. 3 BOX 3630

OPERATOR: NEWFIELD PRODUCTION COMPANY

OPERATOR ACCT, NO. _

N2695

MYTON, UT 84052

ACTION	41 (D) D(D) 111										
CODE	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME	QQ	SC	WELL	OCATION RG	COUNTY	SPUD	EFFECTIVE
Α	99999	17992	4301350390	UTE TRIBAL 16-18-4-2	SESE	18	48	2W	DUCHESNE	3/31/2011	3/3///
WELL 1	COMMENTS:									0,01,2011	1 = 1 = 1/1/
	GRRV										
ACTION	CURRENT	NEW	API NUMBER	WELL NAME							
CODE	ENTITY NO.	ENTITY NO.		IVEGE I WING	QQ	SC	IL LOCAT	RG	COUNTY	SPUD	EFFECTIVE DATE
Α	99999	17993	4304751322	UTE TRIBAL 9-11-4-1E	NESE	11	4 S	1E	UINTAH	3/31/2011	3/31/11
	GRRV									all manages to the same	, , , , , , , , , , , , , , , , , , , ,
ACTION CODE	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME			WELL	OCATION		SPUD	EFFECTIVE
		,			00	SC	TP	RG	COUNTY	SPUD DATE	i i
A	99999	17994	4304751103	FIRST-CHRISTIAN 11-19-4-1E	NESW	19	48	_1E	UINTAH	3/30/2011	3/31/11
ACTION	GRRV			BHL: NESW							, ,
CODE	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME	QQ	sc	WELL L	OCATION RG	COUNTY	SPUD	EFFECTIVE
Α	99999	17995	4301350077	UTE TRIBAL 2-28-4-2W	NWNE		48	2W	DUCHESNE	3/25/2011	3/3///
	nerv										19/9////
ACTION	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME				OCATION		SPUD	EFFECTIVE
		3,4117110.			QQ	sc	TP	RG	COUNTY	DATE	DATE
Α	99999	17996	4304751291	UTE TRIBAL 1-11-4-1E	NENE	11	48	1E	UINTAH	3/25/2011	3/31:/11
	GRRV									•	
CODE	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME	QQ	sc		OCATION		SPUD	EFFECTIVE
		V			<u> </u>	\$C	- PP	RG	COUNTY	DATE	DATE
В	99999	17400	4301350129	HAWKEYE 12-23-8-16	NWSW	23	88	16E	DUCHESNE	3/17/2011	3/31/11
Ĺ	GRRV ODES (See Instructions on back	k of form)				• • • • • • • • • • • • • • • • • • • •				1	-
A- 1	now entity for new well (single v	voli only)		••• ···					1/1	11/1	
B- 11 C- 16	well to existing entity (group or a om one existing entity to anothe	unit well) or existing entity		RECE	IVED				10		Jentri Park
D- M	vell from one existing entity to a	new entity		314B A 2					Signature/	1 ~(
= - II	ner (explain in comments section	n)		MAR 3 1	2011				Production Clerk	//	03/31/11

STATE OF UTAH

1	DEPARTMENT OF NATURAL RI DIVISION OF OIL, GAS ANI			5. LEASE DESIGNATION AND SERIAL NUMBER: FEE
SUNDRY	NOTICES AND REPO	RTS ON	WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:
	new wells, significantly deepen existing wells be aterals. Use APPLICATION FOR PERMIT TO			7. UNIT or CA AGREEMENT NAME:
1. TYPE OF WELL: OIL WELL				8. WELL NAME and NUMBER: FIRST CHRISTIAN 11-19-4-1E
2. NAME OF OPERATOR:				9. API NUMBER:
NEWFIELD PRODUCTION COMPA	ANY			4304751103
3. ADDRESS OF OPERATOR:			PHONE NUMBER	10. FIELD AND POOL, OR WILDCAT:
Route 3 Box 3630 4. LOCATION OF WELL:	CITY Myton STATE UT	ZIP 84052	435.646.3721	MYTON-TRIBAL EDA
FOOTAGES AT SURFACE: 3312 F	SL 2014 FWL			COUNTY: UINTAH
OTR/OTR, SECTION, TOWNSHIP, RANGE, ME	ERIDIAN: NESW, 19, T4S, R1E			STATE: UT
11. CHECK APPROPR	JATE BOXES TO INDICATE	E NATURE (OF NOTICE, REP	ORT, OR OTHER DATA
TYPE OF SUBMISSION		TY	PE OF ACTION	
	ACIDIZE	DEEPEN		REPERFORATE CURRENT FORMATION
NOTICE OF INTENT (Submit in Duplicate)	ALTER CASING	FRACTURE 1	FREAT	SIDETRACK TO REPAIR WELL
-	CASING REPAIR	NEW CONST		TEMPORARITLY ABANDON
Approximate date work will	CHANGE TO PREVIOUS PLANS	OPERATOR		TUBING REPAIR
<u> </u>				
	CHANGE TUBING	PLUG AND A		VENT OR FLAIR
X SUBSEOUENT REPORT (Submit Original Form Only)	CHANGE WELL NAME	PLUG BACK		WATER DISPOSAL
Date of Work Completion:	CHANGE WELL STATUS		N (START/STOP)	WATER SHUT-OFF
<u> </u>	COMMINGLE PRODUCING FORMATIONS	RECLAMAT	ION OF WELL SITE	X OTHER: - Spud Notice
04/04/2011	CONVERT WELL TYPE	RECOMPLE	TE - DIFFERENT FORMATION	
On 3/30/11 MIRU Ross #21.	nt with 200 sks of class "G" w/ 2%	12 1/4" hole v	vith air mist. TIH W/	vorunes, etc. 10 Jt's 8 5/8" J-55 24# csgn. Set @ ixed @ 15.8ppg w/ 1.17ft3/sk yield.
				RECEIVED
				APR 1 8 2011
				DIV. OF OIL, GAS & MINING
NAME (PLEASE PRINT) Cheyenne Batema:	n	-	TITLE	

(This space for State use only)

NEWFIELD PRODUCTION COMPANY - CASING & CEMENT REPORT

			8 5/8"	CASING SET AT	Γ	436.17	-		
LAST CASING			8				Newfield	Exploration 1-19-4-1E	Company
DATUM TO CUT			12	-			Monumer		
DATUM TO BRAI				-		_		Ross Rig #2	 21
TD DRILLER					00,,,,,,,			1.000 1.1.g <i>//</i> 2	· · · · · · · · · · · · · · · · · · ·
_	12 1/4"	•							
•				-					
LOG OF CASING	STRING:								
PIECES	OD	ITEM - M	AKE - DESC	CRIPTION	WT/FT	GRD	THREAD	CONDT	LENGTH
1		wellhead						А	1.42
10	8 5/8"	casing (sho	oe jt 42.90)		24	J-55	STC	Α	423.85
1	8 5/8"	guide shoe)					A	0.9
									1
CASING INVENT	ORY BAL.		FEET	JTS	TOTAL LE	NGTH OF S	STRING		426.17
TOTAL LENGTH	OF STRING	G	426.17	7	LESS CUT	OFF PIEC	E		2
LESS NON CSG.	. ITEMS		2.32		PLUS DAT	UM TO T/C	CUT OFF CS	G	12
PLUS FULL JTS.	LEFT OUT	-	0		CASING S	ET DEPTH			436.17
	TOTAL		423.85	7] ,				<u> </u>
TOTAL CSG. DE	L. (W/O TH	IRDS)]	ARE			
	IMING				1				
BEGIN RUN CSG		Spud	9:00 AM	3/31/2011	GOOD CIF	RC THRU JO	ОВ	Yes	
CSG. IN HOLE		•	11:00 AM		Bbls CMT	CIRC TO S	URFACE	2	
BEGIN CIRC	<u>, , , , , , , , , , , , , , , , , , , </u>		12:40 PM	3/31/2011	RECIPRO	CATED PIP	l No		
BEGIN PUMP CM	ЛT		12:51 PM	3/31/2011	1				
BEGIN DSPL. CN	ЛT		1:07 PM	3/31/2011	BUMPED F	PLUG TO _	200		

1:22 PM

3/31/2011

PLUG DOWN

CEMENT USED		CEMENT CO	MPANY-	BJ Services
STAGE	# SX	CEMENT TY	PE & ADDITIVI	ES
1	160	Class "G"+2%CaCl Mixed@ 15.8ppg W/1.17	yield returned 2b	bls to pit
	ļ			
	ļ			
	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	ļ			
	ļ			
	ļ			· · · · · · · · · · · · · · · · · · ·
		HER PLACEMENT		SHOW MAKE & SPACING
Middle of first,	top of sec	ond and third for a total of three.		
COMPANY REP	RESENTA	TIVE Cheyenne Bateman		DATE 3/31/2011

STATE OF UTAH

	DEPARTMENT OF NATURAL REDIVISION OF OIL, GAS ANI		5. LEASE DESIGNATION AND SERIAL NUMBER:
SUNDRY	NOTICES AND REPO		6. IF INDIAN, ALLOTTEE OR TRIBE NAME:
	II new wells, significantly deepen existing wells bel al laterals. Use APPLICATION FOR PERMIT TO		7. UNIT or CA AGREEMENT NAME:
I. TYPE OF WELL: OIL WELL	GAS WELL OTHER		8. WELL NAME and NUMBER: FIRST CHRISTIAN 11-19-4-1E
2. NAME OF OPERATOR:			9. API NUMBER:
NEWFIELD PRODUCTION COM	PANY		4304751103
3. ADDRESS OF OPERATOR:		PHONE NUMBER	10. FELD AND POOL; OR WILDCAT:
Route 3 Box 3630 4. LOCATION OF WELL:	CITY Myton STATE UT	ZIP 84052 435.646.3721	MYTON-TRIBAL EDA
FOOTAGES AT SURFACE: 43/2	FSL 2014 FWL		COUNTY: UINTAH
OTR/OTR, SECTION, TOWNSHIP, RANGE,	MERIDIAN: NESW, 19, T4S, R1E		STATE: UT
-	PRIATE BOXES TO INDICATE		PORT, OR OTHER DATA
TYPE OF SUBMISSION		TYPE OF ACTION	
NOTICE OF INTENE	ACIDIZE	DEEPEN	REPERFORATE CURRENT FORMATION
NOTICE OF INTENT (Submit in Duplicate)	ALTER CASING	FRACTURE TREAT	SIDETRACK TO REPAIR WELL
Approximate date work will	CASING REPAIR	NEW CONSTRUCTION	TEMPORARITLY ABANDON
	CHANGE TO PREVIOUS PLANS	OPERATOR CHANGE	TUBING REPAIR
	CHANGE TUBING	PLUG AND ABANDON	VENT OR FLAIR
X SUBSEQUENT REPORT	CHANGE WELL NAME	PLUG BACK	WATER DISPOSAL
SUBSEOUENT REPORT (Submit Original Form Only)	1=	=	——————————————————————————————————————
Date of Work Completion:	CHANGE WELL STATUS	PRODUCTION (START/STOP)	WATER SHUT-OFF
05/10/2011	COMMINGLE PRODUCING FORMATIONS	RECLAMATION OF WELL SITE	OTHER: - Weekly Status Report
05/10/2011	CONVERT WELL TYPE	RECOMPLETE - DIFFERENT FORMATIO	N
	MPLETED OPERATIONS. Clearly show all s completed on 5/10/2011, attached		
NAME (PLEASE PRINT) Jennifer Peatros	SS	TITLE Production Tech	nician
SIGNATURE CHUICE	v Peatross	DATE05/12/2011	

RECEIVED MAY 2 3 2011

Daily Activity Report

Format For Sundry FRST CHRISTIAN 11-19-4-1E 3/1/2011 To 7/30/2011

4/26/2011 Day: 1

Completion

Rigless on 4/26/2011 - Ran CBL & shot 2st stage. Skipped 1st stage Wasatch. - Install 5m frac head. NU 6" 5K Cameron BOP. RU H/O truck & pressure test casing, blind rams, frac head, csg & casing valves to 4500 psi. RU Perforators LLC WLT w/ mast & run CBL under pressure. WLTD @ 6893' & cement top @ 224'. Perforate stage #2, CP4/CP3/CP1 sds @ 6470-6312' w/ 3 1/8" Port plug guns (11 gram .36" EH 16.82" pen) w/ 3 spf for total of 30 shots. 165 BWTR. SWIFN.

Daily Cost: \$0

Cumulative Cost: \$16,333

5/4/2011 Day: 2

Completion

Rigless on 5/4/2011 - Frac stgs 2-4. Flowback to pit. - RU The Perforators wireline. Set CFTP @ 5760' & perf stg 3- C sds as shown in perforation report. RU BJ Services. Frac stg 3- C sds as shown in stimulation report. 1211.5 BWTR. - RU The Perforators wireline. Set CFTP @ 5025' & perf stg 4- GB2 sds as shown in perforation report. RU BJ Services. Frac stg 4- GB2 sds as shown in stimulation report. 1906.9 BWTR. - Crew travel and safety meeting. RU BJ Services. Frac stg 2- CP4/CP3/CP1 sds as shown in stimulation report. 690.1 BWTR. - RD BJ Services & The Perforators wireline. Open well to pit for immediate flowback @ approx. 3 bpm. MIRUWOR. Well flowed for 4 hrs & died. Recovered 720 BW. 1186.9 BWLTR. ND Cameron 5K BOPS and NU 5K Shaffer BOPS. RU floor and tbg works. Spot tbg and SDFN @ 17:30.

Daily Cost: \$0

Cumulative Cost: \$128,967

5/6/2011 Day: 3

Completion

WWS #3 on 5/6/2011 - RIH to DO/CO to PBTD. Circ well clean. RU and Swab back fld. - Safety Meeting, discussed location hazards, recent NFX incidents, job procedure, emergency plans, meeting point. SICP @ 390#. BD well. PU, tally, and RIH w/ 4-3/4" used chomp bit and bit sub, and B grade 2-7/8" tbg to 2576'. Circ well clean and cont to RIH to tag fill @ 4930'. RU Nabors swivel and CO to plg @ 5025'. DO plg in 15 min. Cont to RIH to tag plg @ 5760'. DO plg in 24 min. Cont to PU and TIH w/ to tag fill @ 6684'. CO to PBTD @ 6937'. Circ well clean and rack out drill equip. LD 3 jts. EOT @ 6856'. RU swab equip. Make 4 swab runs. Swabbed back 60 Bbls. FFL @ 350'. CWI @ 18:00.

Daily Cost: \$0

Cumulative Cost: \$135,408

5/9/2011 Day: 4

Completion

WWS #3 on 5/9/2011 - Made 11 swab runs and recovered 120 bbls of fluid with no sand and a trace of oil. TOOH with tubing to lay down chomp bit. Ran into hole with NC, 2 joints, PSN, 2 joints, TAC, and 204 joints of tubing. Picked up and primed pump and started running rods. - Crew travel and safety meeting. Pressure on tubing at 100 psi and pressure on casing at 120 psi. Starting fluid level at surface. Make 11 swab runs and recover 120 bbls of fluid with no sand and a trace of oil. Final fluid level at 1200'. Rig down swab equipment and run into hole

with tubing to PBTD at 6937'. No new fill. Circulate well clean and lay down extra tubing. Trip out of hole with tubing and lay down chomp bit. Pick up and trip into hole with BHA and tubing as follows: notched collar, (2) joints 2-7/8" tubing, pump seating nipple, (2) joints 2-7/8" tubing, tubing anchor, and (204) joints 2-7/8" tubing. Nipple down BOPs and set tubing anchor with 18,000 lbs of tension. - Land tubing with B-1 adaptor flange to place TAC at 6421.86', PSN at 6486.98', and EOT at 6553.64'. Nipple up wellhead, cross-over to rod equipment, and flush tubing with 60 bbls of water. Pick up and prime Central Hydraulic 25-150-RHAC-16-4-17-20 pump with 182" max stroke length. Pick up and trip into hole with rods as follows: (1) 1" x 4' stablizer bar, (6) 1-1/2" weight bars, and (152) 3/4" 4per guided rods. SWIFN at 5:30 pm.

Daily Cost: \$0

Cumulative Cost: \$141,075

5/10/2011 Day: 5

Completion

WWS #3 on 5/10/2011 - Continue running rods. Seat pump, RU pumping unit and hang rods. Stroke test pump, RDMOWOR and turn well over to production without putting on pump. - Safety Meeting, discussed location hazards, recent NFX incidents, job procedure, emergency plans, meeting point. SITP @ 80#, SICP @ 100#. Cont running rods as follows: 99- 7/8" guided rods, 1-8', 1-6', 1-4', and 1-2' X 7/8 Pony rods. 1-1.5"X30' polish rod. Seat pump, and RU pumping unit. Hang rods off to unit. With hole full of fluid, stroke test pump with unit to 800 PSI. RDMOWOR. Turned well over to production with out POP. **Finalized**

Daily Cost: \$0

Cumulative Cost: \$215,359

Pertinent Files: Go to File List

Form 3160-4 √ (August 2007)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED

				BUR	EAU OF	LAND MA	۸N	AGEME	NT							Expires: Ju	1004-0137 ly 31, 2010	
	٧	VELL	. CON	IPLET	ION OR	RECOMPL	ΕT	ION RE	PORT	AND I	LOG			5. L	ease Se	rial No.		
								- <u>-</u>						FEE				
la. Type of	Well	. Z	Oil We	ell _	Gas Well	Dry Deepen		Other		2¢ D				6. If	Indian	, Allottee or	Tribe Name	
	•		Other:		- ·	r 🗀 Deepen		Plug Back	□ Dit	f. Resvr.	••			7. U	nit or C	CA Agreemen	t Name and No.	
2. Name of NEWFIEL	Operator DEXPLO	RATI	ON CC)MPAN	Y							•				me and Well IRISTIAN 1		
3. Address		ST SU	UTF 1000	DENVER	, CO 80202				n. Phone		lude ar	ea code)		FI Wel 147-51			
4. Location						dance with Fed	eral		,	3 0721				10. 1	ield ar	nd Pool or Ex	ploratory	
At surfa	^{ce} 2312' F	SL &	2014'	FWL (N	E/SW) SE	C. 19, T4S, R	1E							11. 3	Sec., T.	, R., M., on B	lock and	
														1	urvey	or Area SEC.	19, T4S, R1E	
At top pr	od. interval	report	ed belov	v										12. (County	or Parish	13. State	
At total d	lepth 7000)'												UIN	TAH		UT	
14. Date St 03/30/20				15. Date 04/19/2	T.D. Reach	ed			Date Com D & A)5/09/2 Ready t			17. 1	Elevation	ons (DF, RK) 5001' KB	B, RT, GL)*	
18. Total D	epth: MI	70	00'	04/10/2		lug Back T.D.:		D 6937	<u></u>				idge Plu	g Set:	MD	3001 NB		
21. Type F	TV Electric & Ot		chanical	Logs Rui	n (Submited	opy of each)	TV	/D	-		22. W	Vas well	cored?	Z N	rvd • 🗀	Yes (Submit	analysis)	
DUAL IN	O GRD, SI	P, C O	MP. DI	ENSITY	COMP. N	IEUTRON,GF	R,CA	ALIPER, C	МТ ВО	ND		Vas DST Direction	`run? al Surve	√ 2 N √? √2 N	。□	Yes (Submit	report)	
23. Casing	1				<u></u>			Stage Co	ementer	No.	of Sks.	&	Slurry	/ Vol.		1		
Hole Size	Size/G		Wt. (#.		Top (MD)	Bottom (M	ID)	Dej		Туре	of Cer	nent	(BI		Cem	nent Top*	Amount P	ulled
12-1/4" 7-7/8"	8-5/8" J 5-1/2" J		24# 15.5#	0		435' 6983'		-		160 C	LASS	-			224'			
7-770	3-1/2 3	-55	13.5#			0903		<u> </u>		430 5					224			
										100 0.	0,001	-						
														•				·
														[
24. Tubing	Record Depth	Set (M	(D) I	Packer De	pth (MD)	Size		Depth Se	t (MD)	Packer	Depth (MD)	Siz	e T	Dept	th Set (MD)	Packer Dep	th (MD)
2-7/8"	EOT@	0 655		@ 642	*													
25. Produci	ing Interval: Formatio			Т	Тор	Bottom			foration forated In		1	C	ize	No. F	olee	1	Perf. Status	
A) Green		11		4916'	ТОР	6472'		4916-64		ici vai		.36"	ize	87	oics	-	reit. Status	·· ····
B)										•								
C)																		
D)				<u></u>														
27. Acid, F	Depth Inter		t, Cemer	it Squeez	e, etc.					Amount a	and Tvi	ne of M	aterial					
4916-6472				Frac w	v/ 211083#	s 20/40 sand	l in '	1263 bbls										
				-	-										•			
28. Product	ion - Interv	al A		<u> </u>				······										
Date First Produced	Test Date	Hours		est oduction	Oil BBL	Gas MCF	Wa BB		Oil Grav Corr. Al		Gas	vity		uction Me		6' v 17' v 2	0' RHAC Pum	ın.
5/14/11	5/25/11	24	1	->	132	41	15			•	0.0	·····y		12 X 1-1	12 X I	0 1 1 7 1 2	O KIIAO FUIII	ι h
Choke	Tbg. Press.	Csg.		Hr.	Oil	Gas	Wa	iter	Gas/Oil			II Status						
Size	Flwg. SI	Press.	Ra	ite	BBL	MCF	ВВ	L	Ratio		PR	RODUC	CING					
28a. Produc	tion - Inter	/al R					<u>L</u>		L			·				•		
Date First	Test Date	Hours		est	Oil	Gas	Wa		Oil Grav		Gas		Prod	uction Me	thod			
Produced		Tested	i Pro	oduction	BBL	MCF	BB	L	Corr. AF	' [Gra	vity						
	Tbg. Press.			Hr.	Oil BBL	Gas	Wa		Gas/Oil	•	Wel	Il Status				ים		
	Flwg. SI	Press.	Ra	iic 🛌	DDL	MCF	BB	L	Ratio							T I	ECEIVE	:D

DIV. OF OIL, GAS & MINING

	uction - Inte		- 1	la c		E						
Pate First Produced	Test Date	Hours Tested	Test Production	Oil BBL	Gas MCF	Water BBL	Oil Gravi Corr. API		Gas Gravity	Production Method		
hoke	Tbg. Press. Flwg. SI	Csg. Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/Oil Ratio		Well Status			
8c. Produ	Luction - Inte	rval D		1	<u> </u>			1	· · · · · · · · · · · · · · · · · · ·		······	
ate First roduced	Test Date	Hours Tested	Test Production	Oil BBL	Gas MCF	Water BBL	Oil Gravi Corr. API		Gas Gravity	Production Method		
ize	Tbg. Press. Flwg. SI	Csg. Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/Oil Ratio	\	Well Status			
9. Dispos	L sition of Gas	Solid, us	sed for fuel, ve	nted, etc.)			L					
OLD AND	USED FOR F	UEL										
). Summ	ary of Poro	us Zones	(Include Aqui	fers):				Ţ.	31. Formati	on (Log) Markers		
Show a includir recover	ng depth int	zones of perval teste	porosity and co d, cushion use	ontents the	ereof: Cored ol open, flow	intervals and all ing and shut-in	l drill-stem tes pressures and	sts,	GEOLOGI	CAL MARKERS		
-			_									Тор
Form	nation	Тор	Bottom		Des	criptions, Conte	ents, etc.			Name		Meas. Depth
REEN RIV	ÆR	4916'	6472'			 · · · · · · · · · · · · · · · · 			GARDEN GU GARDEN GU		4430° 4615°	
									GARDEN GU POINT 3	LCH 2	4734' 5031'	
									X MRKR Y MRKR		5250' 5289'	
									DOUGLAS CI BI CARBONA		5435' 5769'	
									B LIMESTON CASTLE PEA		5889' 6226'	
									BASAL CARB WASATCH	ONATE	6604' 6726'	
2. Additio	onal remark	s (include	plugging proc	edure):								····
			•							•	•	
. Indicate	e which iten	ns have be	en attached by	placing a	check in the	appropriate box	xes:					
_		_	(1 full set req'd			Geologic Report		OST Report		Directional Survey		
	·								ing Daily A	·· · · · · · · · · · · · · · · · · ·		
					nation is corr	plete and correc				cords (see attached instructi	ions)*	
	₩	Jer	nifer Peatro	SS				duction Te	echnician			-
Sig	nature	Yes	1000				Date 06/23	3/2011				
						t a crime for any		vingly and	willfully to r	nake to any department or a	igency of the U	nited States any
	on page 3)	3.4.0									(Fo	orm 3160-4, pa

Daily Activity Report

Format For Sundry FRST CHRISTIAN 11-19-4-1E 2/1/2011 To 6/30/2011

FRST CHRISTIAN 11-19-4-1E

Waiting on Cement

Date: 4/4/2011

Ross #21 at 435. Days Since Spud - yield. Returned 2bbls to pit, bump plug to 200 psi, BLM and State were notified of spud via email. - On 3/30/11 Ross #21 spud and drilled 435' of 12 1/4" hole, P/U and run 10 jts of 8 5/8" casing set - @ 436.17'KB. On 3/31/11 cement w/BJ w/160 sks of class G+2%kcl+.25#CF mixed @ 15.8ppg and 1.17

Daily Cost: \$0

Cumulative Cost: \$77,727

FRST CHRISTIAN 11-19-4-1E

Drill 7 7/8" hole with fresh water

Date: 4/16/2011

NDSI #2 at 1154. 1 Days Since Spud - quick-cuopler and fill koomy w/oil. All tests ok. - outside valve, blind rams, kill line, choke line and manifold. 2000 psi for ten minutes. Then - R/U Quicktest, test upper kelly valve safety valve, pipe rams, inside valve, pipe rams, outside - Re-drill rathole - On 4/15/2011 MIRU set all equipment w/Liddell Trucking. (14.8 mile from the UT 8-16-4-1W) - test on 4/14/2011 at 2:00 PM. - 24hr notice sent to BLM and State via email on 4/14/2011 of rig movr on 4/15/2011@ 7:00 AM and BOP - P/U BHA as follows: Hughes PDC bit, Hunting 6.5 mud motor, Monel Drill Collar 26.38', 1x2.38' - index sub, 1x 3.4' gap sub, 1 x 5' pony sub 6 x 6.25 drill collars. Tag cement at 330' - Drill 7 7/8" hole from 330' to 1154' with 10,000 lbs WOB, 161 total RPM, 400 GPM & 96.9 fph ROP. - surface casing for 30 min at 1500 psi. Blew a hydrolic hose off of the pipe rams. Replaced

Daily Cost: \$0

Cumulative Cost: \$107,468

FRST CHRISTIAN 11-19-4-1E

Drill 7 7/8" hole with fresh water

Date: 4/17/2011

NDSI #2 at 4354. 2 Days Since Spud - Rig service. Function test BOP and crown-o-matic - Drill 7 7/8" hole from 3023' to 4354' with 10,000 lbs WOB, 161 total RPM, 400 GPM & 110.91 fph ROP. - Adjust engine pully on mud pump - Drill 7 7/8" hole from 2264' to 3023' with 10,000 lbs WOB, 161 total RPM, 400 GPM & 189.75 fph ROP. - Drill 7 7/8" hole from 1154' to 2264' with 10,000 lbs WOB, 161 total RPM, 400 GPM & 185 fph ROP.

Daily Cost: \$0

Cumulative Cost: \$127,267

FRST CHRISTIAN 11-19-4-1E

Drill 7 7/8" hole with fresh water

Date: 4/18/2011

NDSI #2 at 6699. 3 Days Since Spud - Rig service. Fiunction test BOP and Crown-o-matic - Drill 7 7/8" hole from 4354' to 5114' with 20,000 lbs WOB, 161 total RPM, 400 GPM & 116.91 fph ROP. - Drill 7 7/8" hole from 5114' to 6699' with 20,000 lbs WOB, 161 total RPM, 400 GPM & 93.2 fph ROP.

Daily Cost: \$0

Cumulative Cost: \$198,331

FRST CHRISTIAN 11-19-4-1E

Waiting on Cement

Date: 4/19/2011

NDSI #2 at 7000. 4 Days Since Spud - Test 5 1/2" rams to 2000 psi for ten minutes. Test ok.

- R/U PSI and log well w/ tripple combo suite. 30'/hr 7000' to 4600' - Circulate - Drill 7 7/8" hole from 6699' to 7000' with 20,000 lbs WOB, 161 total RPM, 400 GPM & 100 fph ROP. - R/U and run 164 jts 5 1/2" 15.50# J55 casing set at 6982'/KB - Circulate, land casing mandrill and rig up BJ hard lines. - Pressure test BJ line and start w/ 300 sacks of lead cement mixed at 11 ppg and 3.43 yield. - Lay down DP and BHA

Daily Cost: \$0

Cumulative Cost: \$335,536

FRST CHRISTIAN 11-19-4-1E

Wait on Completion

Date: 4/20/2011

NDSI #2 at 7000. 5 Days Since Spud - Returned 2bbls to resreve pit. - Pump 300 sacks lead PL11+3%KCL+5#CF+5#KOL+.5SMS+FP+SF, 11ppg 3.43 yield Then - Clean mud tanks.

Release rig at 10:30 AM 4/19/2011 - 430 sacks 50:50:2+3%KCL+.5%EC-1+.25#CF+.05#SF+.3SMS+FP-6L. Mixed at 14.4ppg & 1.24 yield **Finalized**

Daily Cost: \$0

Cumulative Cost: \$363,769

Pertinent Files: Go to File List

FORM 3160-5 (August 2007)

UNITED STATES DEPARTMENT OF THE INTERIOR

I hereby certify that the foregoing correct (Printed/ Typed) Jennifer Peaross Signature	55	Title Production Technici Date 05/12/2011 FOR FEDERAL OR STATE		JUN 2 1 2012 DIV. OF OIL, GAS & MINING
COTTECT (Printed/ Typed) Jennifer Pearcoss Signature	55	Production Technici Date 05/12/2011		_
COTTECT (Printed/ Typed) Jennifer Pearcoss Signature		Production Technici	an	_
correct (Printed/ Typed)	is true and			_
				_
				_
				JUN 2 1 2012
				RECEIVED
The above subject well v	was completed on 5/10/20	011, attached is a daily comple	etion status report.	
Final Abandonment Notices shall I inspection.)	be filed only after all requirements, in	ncluding reclamation, have been complete	d, and the operator has determine	d that the site is ready for final
Bond under which the work will be of the involved operations. If the	e performed or provide the Bond No. operation results in a multiple comple	surface locations and measured and true v on file with BLM/BIA. Required subsequetion or recompletion in a new interval, a l	uent reports shall be filed within form 3160-4 shall be filed once to	30 days following completion
13. Describe Proposed or Completed (Operation: (Clearly state all pertinent	details, including estimated starting date	of any proposed work and approx	mate duration thereof. If the
Final Abandonment	Change Plans Convert to Injector	Plug & Abandon Plug Back	Temporarily Abandon Water Disposal	Weekly Status Report
☑ Subsequent Report	Alter Casing Casing Repair	Fracture Treat New Construction	Reclamation Recomplete	☐ Well Integrity ☑ Other
Notice of Intent	Acidize	Deepen D	Production (Start/Resume)	Water Shut-Off
TYPE OF SUBMISSION		TYPE OF	ACTION	
12. CHEC	K APPROPRIATE BOX(ES) TO INIDICATE NATUI		THER DATA
NESW Section 19 T4S R1E			UINTAH, UT	,
4. Location of Well (Footage,	Sec., T., R., M., or Survey Desc.	ription)	MYTON-TRIE 11. County or Pa	
Myton, UT 84052		3b. Phone (include are code) 435.646.3721	4304731103	ol, or Exploratory Area
NEWFIELD PRODUCTION C 3a. Address Route 3 Box 3630	OMPANY	To the second se	9. API Well No.	HAN 11-19-4-1E
Oil Well Gas Well 2. Name of Operator	Other		8. Well Name ar	d No. IIAN 11-19-4-1E
1. Type of Well				,
SUBMIT IN	N TRIPLICATE - Other	Instructions on page 2	7. If Unit or CA/	Agreement, Name and/or
Do not use t abandoned w	this form for proposals t vell. Use Form 3160-3 (A	to drill or to re-enter an APD) for such proposals.		ttee or Tribe Name.
	Y NOTICES AND REPO	ORTS ON WELLS	5. Lease Serial I FEE	No
SUNDR	BUREAU OF LAND MAN			Expires: July 31,2010

FORM APPROVED

which would entitle the applicant to conduct operations thereon. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious and fraudulent statements or representations as to any matter within its jurisdiction

Office

Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED OMB NO. 1004-0137

				BURE.	AU OF .	LAND MAN	IAGI	EMEN	IT							Expires: Ju	ly 31, 2010	
	WI	ELL C	OMP	LETIO	N OR R	ECOMPLE	TION	I REP	ORT A	ND L	.OG			5. L	ease Sei	rial No.		
							-							FEE				
la. Type of b. Type of	Well Completion:	V O	il Well ew Well	G	as Well Jork Over	Dry Deepen	Othe Plug	r Back	☐ Diff.	Resvr.,				6. If	Indian,	Allottee or 7	Γribe Name	
	•		ther:					_		ĺ				7. U	nit or C	A Agreemen	nt Name and No.	
Name of NEWFIELI	Operator D EXPLOF	RATION	и сом	PANY												me and Well RISTIAN 1		
3. Address	1401 17TH S	T. SUITE	E 1000 DE	ENVER, C	O 80202				Phone N 35) 646		ude are	a code)		FI Well 047-51			
4. Location	of Well (Re	port loc	cation cl	early and	l in accord	ance with Feder	al requ	irement.	s)*					10. 1	Field an	d Pool or Ex	ploratory	
A + C																NATED	N 1 1	
At surrac	e 2312' FS	SL & 20	014' FV	VL (NE/	SW) SEC	. 19, T4S, R1I	E,							11. 3	Sec., 1., Survey o	, R., M., on E or Area SEC.	. 19, T4S, R1E	
At top pro	od, interval r	eported	below													or Parish	13. State	
At total de	epth 7990	- 21	75	FSL	200	3 FWL	B	HL	lov b	MSt	(UIN	TAH		UT	
14. Date Sp	udded		15.	Date T.	D. Reache	d		16. Da	te Comp	leted 0	5/09/2						B, RT, GL)*	
03/30/201 18. Total D		7000		4/19/20		ıg Back T.D.:	MD (D&A		Ceady to		idge Plug		9' GL MD	5001' KB		
10. 100010	TVI	D (η)	98		12. 110	ig Dack 1.D	TVD (@3!	<u>څ</u>		20. DC	pui bi	luge I lug		TVD			
21. Type E	lectric & Oth	er Mech	anical L	-	-	y of each)					22. W					Yes (Submi		
						EUTRON,GR,	CALIF	PER, C	MT BOI	ND		as DST	run? nal Survey			Yes (Submi Yes (Submi	t report) t copy)	
23. Casing	and Liner R	Record (Report of	all string.	s set in wel	1)	Т.	Store Co	mantar	Νīο	of Sks.	0-	Classes	Vol.				
Hole Size	Size/Gra	ade '	Wt. (#/ft.	.) To	op (MD)	Bottom (MD) '	Stage Cer Dept			of Cen	1	Slurry (BB		Cem	ent Top*	Amount Pulled	
12-1/4"	8-5/8" J-		24#	0		435'				160 CI	LASS	G						
7-7/8"	/8" 5-1/2" J-55 15.5# 0				6983'				300 PI					224'				
				_			_			430 50	0/50 P	OZ						
	•			-														
							-											
24. Tubing	Record			1.												·		
Size		Set (MD) Pa	cker Dept	h (MD)	Size	D	Depth Set	(MD)	Packer l	Depth (1	MD)	Siz	e	Dep	th Set (MD)	Packer Depth (MD)	
2-7/8"		6554	TA (@ 6422'														
25. Produci	ing Intervals Formation		1	т	op	Bottom	26.		oration I		- 1		Size	No I	Holes	1	Perf. Status	
A) Green				4916'	op	6472'	49	16-647		ioi vai		.36"	JIEC .	87	10100		1 ori. Diacus	
B)																		
<u>C)</u>																		
D)																		
27. Acid, F	racture, Trea	atment,	Cement	Squeeze,	etc.						J T	C1	fatania1					
4916-647		vai		Frac w/	211083#	s 20/40 sand i	in 126	33 bbls		mount a		•			,			
1010 0111	<u>-</u>			1 100 117	21100011	0 201-10 00110 1	120	0 0010	Of Light	9 17	naia	0 0	iagoo.					
	tion - Interva		hr		lou.	la.	117		0.1.0		lo		ho		f . 41 1			
Date First Produced	Test Date	Hours Tested	Tes Pro		Oil BBL		Water BBL		Oil Grav Corr. Al		Gas Gra	s avity		uction M /2" x 1-		16' x 17' x 2	20' RHAC Pump	
5/14/11	5/25/11	24	-	→	132	41	15					·						
Choke	Tbg. Press.		24 1	Hr.	Oil		Water		Gas/Oil		We	ll Stati	JS					
Size	Flwg. SI	Press.	Rat	e -	BBL	MCF	BBL		Ratio		PF	RODU	ICING					
28a. Produc	ction - Interv	val B															- Andrews - Andr	
Date First		Hours	Tes		Oil		Water		Oil Grav		Gas		Proc	luction M	1ethod			
Produced		Tested	Pro	duction	BBL	MCF	BBL		Corr. Al	PI	Gra	avity						
Choke	Tbg. Press.		24 1		Oil		Water	,	Gas/Oil		We	ell Stati	JIS				***	
Size	Flwg. SI	Press.	Rat	e -	BBL	MCF	BBL		Ratio							RECEI	VFD	

001 D 1										
Date First	uction - Inte Test Date	Hours	Test	Oil	Gas	Water	Oil Gravity	Gas	Production Method	
Produced		Tested	Production	BBL	MCF	BBL	Corr. API	Gravity	roduction receipt	
Choke Size	Tbg. Press. Flwg. SI	Csg. Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/Oil Ratio	Well Status		
	uction - Inte			J						
Date First Produced	Test Date	Hours Tested	Test Production	Oil BBL	Gas MCF	Water BBL	Oil Gravity Corr. API	Gas Gravity	Production Method	
Choke Size	Tbg. Press. Flwg. SI	Csg. Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/Oil Ratio	Well Status		
29. Dispo	sition of Gas	s (Solid, us	ed for fuel, ve	nted, etc.)					
	USED FOR F									
30. Sumr	nary of Poro	us Zones	(Include Aqui	fers):				31. Format	tion (Log) Markers	
	ing depth int					intervals and al ng and shut-in	ll drill-stem tests, pressures and	GEOLOG	GICAL MARKERS	
For	mation	Тор	Bottom		Desc	criptions, Cont	ents, etc.		Name	Top Meas. Depth
		1		<u> </u>						
GREEN RI	VER	4916'	6472'					GARDEN G GARDEN G		4430' 4615'
								GARDEN G POINT 3	ULCH 2	4734' 5031'
								X MRKR Y MRKR		5250' 5289'
								DOUGLAS (BI CARBON	CREEK MRK IATE MRK	5435' 5769'
								B LIMESTO CASTLE PE		5889' 6226'
		-						BASAL CAR WASATCH	BONATE	6604' 6726'
32. Addi	tional remar	ks (include	plugging pro	cedure):						
33. Indic	ate which ite	ems have b	een attached I	y placing	g a check in the	appropriate be	oxes:			
☐ Ele	ctrical/Mech	anical Logs	(1 full set req	'd.)		Geologic Repo	ort DST	Report	☐ Directional Survey	
Sur	ndry Notice f	or plugging	and cement v	erification		Core Analysis	✓ Other	: Drilling Daily	Activity	
34. I here	by certify the	nat the fore	going and atta	ached infe	ormation is con	nplete and corr	ect as determined fr	om all available	records (see attached instructions)	*
			nnifer Peat					ion Technician		
	Signature 7	Xe	atro-	4			Date 06/23/20)11		
						it a crime for a		ly and willfully t	o make to any department or agend	cy of the United States any

(Continued on page 3) (Form 3160-4, page 2)

NEWFIELD EXPLORATION

USGS Myton SW (UT) SECTION 19 T4S, R1E 11-19-4-1E

Wellbore #1

Design: Actual

Standard Survey Report

22 April, 2011

Survey Report

EPAYZONE

Company:

NEWFIELD EXPLORATION

Project: Site:

USGS Myton SW (UT)

Well:

SECTION 19 T4S, R1E 11-19-4-1E

Wellbore: Wellbore #1 Actual Design:

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method: Database:

Well 11-19-4-1E

11-19-4-1E @ 5001.0ft (Newfield Rig #2) 11-19-4-1E @ 5001.0ft (Newfield Rig #2)

Minimum Curvature

EDM 2003.21 Single User Db

Project

USGS Myton SW (UT), DUCHESNE COUNTY, UT, USA

Map System:

US State Plane 1983

Geo Datum: Map Zone:

North American Datum 1983

Utah Central Zone

System Datum:

Mean Sea Level

Site

From:

SECTION 19 T4S, R1E

Site Position:

Мар

Northing: Easting:

7,216,400.00 ft 2,061,000.00 ft Latitude: Longitude: 40° 7' 16 243 N

Field Strength

Position Uncertainty:

Slot Radius:

Grid Convergence:

109° 59' 45.328 W

0.0 ft

0.96

Well

11-19-4-1E, SHL: LAT 40 07 10.46 LONG: -109 55 41.86

Well Position

+N/-S +E/-W

0.0 ft 0.0 ft Northing: Easting:

7,216,140.11 ft 2,079,919.73 ft

Latitude: Longitude:

40° 7' 10 460 N 109° 55' 41.860 W

Position Uncertainty

0.0 ft

Wellhead Elevation:

5,001.0 ft

Ground Level:

4,989.0 ft

Wellbore Wellbore #1 **Model Name** Declination Dip Angle Magnetics Sample Date

(°) 65.90 52,387 IGRF2010 2010/12/02 11.34 Design Actual **Audit Notes:**

Version: 1.0 Phase: ACTUAL Tie On Depth: 0.0 **Vertical Section:** Depth From (TVD) +N/-S +F/-W Direction (ft) (ft) (ft) (°) 165.78 0.0 0.0 0.0

Survey Program 2011/04/22 From (ft) (ft) Survey (Wellbore) Description **Tool Name** 520.2 7,000.0 Survey #1 (Wellbore #1) MWD MWD - Standard

Survey Measured Vertical Vertical Dogleg Build Turn Depth Section Rate Rate Rate Depth +N/-S +F/.W Inclination Azimuth (ft) (ft) (ft) (ft) (°/100ft) (°/100ft) (°/100ft) (°) (°) 0.00 0.00 0.00 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.09 0.00 520.2 0.47 22.15 520.2 2.0 0.8 -1.7 0.09 642.2 0.44 47.11 642.2 2.8 1.3 -2.3 0.16 -0.02 20.45 0.00 -21.98 672.0 0.44 40.56 672.0 2.9 1.5 -2.5 0.17 702 7 0.44 44 12 702 7 3.1 1.7 -2.6 0.09 0.00 11.59 3.3 0.14 0.00 -18.16 742.1 0.44 36.96 742.1 1.8 -2.8 0.07 0.00 -9.15 34.00 3.5 20 -29 774.5 0.44 774 5 -8 43 806.2 0.44 31.33 806.2 37 2.1 -3.1 0.06 0.00 837.9 0.44 35.51 837.9 3.9 2.3 -3.3 0.10 0.00 13.19 0.03 0.00 -3.77 869.4 0.44 34.32 869.4 4.1 2.4 -3.4 0.23 0.13 -23 87 901.1 0.48 26.76 901.1 4.4 2.5 -3.6 932.8 0.44 40.78 932.8 4.6 2.7 -3.8 0.38 -0.13 44.16 963.9 5.37 0.40 42.45 2.8 -3.9 0.13 -0.13 963.9 4.7

Survey Report

Company: Project: **NEWFIELD EXPLORATION**

USGS Myton SW (UT)

Site: Well: Wellbore:

Design:

SECTION 19 T4S, R1E

11-19-4-1E ... Wellbore #1

Actual

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Database:

Well 11-19-4-1E

11-19-4-1E @ 5001.0ft (Newfield Rig #2) 11-19-4-1E @ 5001.0ft (Newfield Rig #2)

True

Minimum Curvature

rvey	Opportunity of the Control of the Co	September 1991		eren er en					
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)
995.3	0.35	45.44	995.3	4.9	3.0	-4.0	0.17	-0.16	9.53
1,027.0	0.35	45.35	1,026.9	5.0	3.1	-4.1	0.00	0.00	-0.28
1,059.0	0.35	47.77	1,059.0	5.2	3.2	-4.2	0.05	0.00	7.55
1,092.7	0.38	51.25	1,092.7	5.3	3.4	-4.3	0.11	0.09	10.34
1,124.1	0.35	49.39	1,124.1	5.4	3.6	-4.4	0,10	-0.10	-5.93
1,156.4	0.40	50.05	1,156.4	5.6	3.7	~4.5	0.16	0.15	2.04
1,187.2	0.48	53.88	1,187.2	5.7	3.9	-4.6	0.28	0.26	12.43
1,218.7	0.48	53.08	1,218.7	5.9	4.1	-4.7	0.02	0.00	-2.54
1,250.5	0.44	62.18	1,250.4	6.0	4.3	-4.7	0.26	-0.13	28.68
1,282.2	0.53	59.98	1,282.1	6.1	4.6	-4.8	0.29	0.28	-6.94
1,313.1	0.53	65.64	1,313.1	6.3	4.8	-4.9	0.17	0.00	18.28
1,345.4	0.53	68.47	1,345.4	6.4	5.1	~4.9	0.08	0.00	8.76
1,377.2	0.53	77.96	1,377.1	6.5	5.4	-4.9	0.28	0.00	29.89
1,408.6	0.48	81.96	1,408.5	6.5	5.6	-4.9	0.19	-0.16	12.75
1,440.2	0.53	87.54	1,440.1	6.5	5.9	-4.9	0.22	0.16	17.66
1,471.7	0.57	88.68	1,471.6	6.5	6.2	-4.8	0.13	0.13	3.62
1,504.3	0.53	90.48	1,504.2	6.5	6.5	-4.7	0.13	-0.12	5.52
1,536.1	0.53	95.54	1,536.1	6.5	6.8	-4.7	0.15	0.00	15.88
1,568.0	0.48	95.27	1,568.0	6.5	7.1	-4.6	0.16	-0.16	-0.85
1,599.5	0.53	94.38	1,599.5	6.5	7.1	-4.5	0.16	0.16	
1,630.8	0.53	92.85	1,630.8	6.5	7.7				-2.83
1,662.3	0.57	92.65 94.13	,	6.4	7.7 8.0	-4.4	0.05	0.00	-4.89
1,002.3	0.57	34.13	1,662.3	0.4	0.0	-4.3	0.13	0.13	4.07
1,694.2	0.66	92.50	1,694.2	6.4	8.3	-4.2	0.29	0.28	-5.11
1,725.7	0.70	93.25	1,725.7	6.4	8.7	-4.1	0.13	0.13	2.38
1,757.4	0.73	94.48	1,757.4	6.4	9.1	-3.9	0.11	0.09	3.88
1,788.9	0.70	101.03	1,788.9	6.3	9.5	-3.8	0.28	-0.10	20.81
1,821.7	0.66	100.37	1,821.6	6.2	9.9	-3.6	0.12	-0.12	-2.02
1,852.9	0.57	100.28	1,852.9	6.2	10.2	-3.5	0.29	-0.29	-0.29
1,884.7	0.57	97.38	1,884.7	6.1	10.5	-3.4	0.09	0.00	-9.13
1,916.5	0.53	94.04	1,916.4	6.1	10.8	-3.3	0.16	-0.13	-10.51
1,948.0	0.70	99.49	1,947.9	6.1	11.1	-3.1	0.57	0.54	17.30
1,979.2	0.74	97.55	1,979.1	6.0	11.5	-3.0	0.15	0.13	-6.22
2,011.1	0.66	98.04	2,011.0	6.0	11.9	-2.9	0.25	-0.25	1.54
2,042.9	0.66	101.64	2,042.8	5.9	12.3	-2. 3 -2.7	0.13	0.00	11.31
2,074.1	0.62	101.54	2,042.8	5.8	12.3	-2.7 -2.5		-0.13	
	0.62						0.16		9.05
2,106.1 2,137.8	0.53	114.57 131.48	2,106.1	5.7 5.5	12.9 13.2	-2.4	0.36	-0.16	31.52
2,137.8	0.53	131.46	2,137.7		13.2	-2.1	0.53	-0.13	53.48
2,169.3	0.56	133.92	2,169.3	5.3	13.4	-1.9	0.12	0.10	7.73
2,200.9	0.53	147.61	2,200.8	5.1	13.6	-1.6	0.42	-0.10	43,38
2,233.2	0.57	143.35	2,233.1	4.9	13.8	-1.3	0.18	0.12	-13.21
2,265.0	0.57	149.94	2,264.9	4.6	13.9	-1.0	0.21	0.00	20.72
2,296.7	0.57	155.04	2,296.6	4.3	14.1	-0.7	0.16	0.00	16.08
2,328.2	0.66	165.14	2,328.2	4.0	14.2	-0.4	0.45	0.28	31.98
2,359.9	0.79	175.74	2,359.8	3.6	14.3	0.0	0.59	0.41	33.50
2,391.2	0.83	174.15	2,391.1	3.2	14.3	0.4	0.15	0.13	-5.08
2,422.8	0.92	176.31	2,422.7	2.7	14.3	0.9	0.30	0.28	6.84
2,454.9	1.01	178.46	2,454.8	2.1	14.4	1.5	0.30	0.28	6.69
2,486.5	1.01	182.46	2,486.4	1.6	14.4	2.0	0.22	0.00	12.68
2,518.6	1.05	188.38	2,518.5	1.0	14.3	2.5	0.35	0.12	18.44
2,549.5	0.97	200.78	2,549.4	0.5	14.2	3.0	0.75	-0.26	40.13
2,581.8	1.14	204.26	2,549.4	-0.1	13.9	3.5	0.75	0.53	10.76
2,613.4	1.14	204.26	2,561.7	-0.1 -0.7	13.9	3.5 4.0	0.35	0.35	1.30
2,644.9	1.36	199.82	2,644.8	-1.3	13.4	4.6	0.49	0.35	-15.40
2,676.4	1.41	202.23	2,676.2	-2.0	13.1	5.2	0.24	0.16	7.67

Survey Report

Company: Project:

NEWFIELD EXPLORATION

USGS Myton SW (UT)

Site: Well:

SECTION 19 T4S, R1E 11-19-4-1E

Wellbore: Design:

Wellbore #1 Actual

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method: Database:

Well 11-19-4-1E

11-19-4-1E @ 5001.0ft (Newfield Rig #2)

11-19-4-1E @ 5001.0ft (Newfield Rig #2)

Minimum Curvature

Measured	.00		Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)
2,707.2	1.49	200.48	2,707.0	-2.8	12.8	5.8	0.30	0.26	-5.68
2,738.7	1.63	198.81	2,738.6	-3.6	12.6	6.5	0.47	0.44	-5.29
2,770.7	1.58	200.96	2,770.5	-4.4	12.3	7.3	0.24	-0.16	6.73
2,802.4	1.58	199.82	2,802.2	-5.2	11.9	8.0	0.10	0.00	-3.60
2,833.9	1.61	202.19	2,833.7	-6.1	11.6	8.7	0.23	0.10	7.53
2,865.2	1.63	203.77	2,865.0	-6.9	11.3	9.4	0.16	0.06	5.04
2,897.0	1.76	203.29	2,896.7	- 7.7	10.9	10.2	0.41	0.41	-1.51
2,928.3	1.85	201.09	2,928.1	-8.6	10.5	11.0	0.36	0.29	-7.01
2,961.3	1.93	201.53	2,961.0	-9.7	10.1	11.8	0.25	0.24	1.34
2,992.8	1.89	201.53	2,992.6	-10.6	9.8	12.7	0.13	-0.13	0.00
3,024.6	1.89	201.80	3,024.3	-11.6	9.4	13.5	0.03	0.00	0.85
3,056.0	1.98	196.48	3,055.7	-12.6	9.0	14.4	0.64	0.29	-16.90
3,087.6	1.98	197.09	3,087.2	-13.7	8.7	15.4	0.07	0.00	1.93
3,119.1	2.02	195.56	3,118.7	-14.7	8.4	16.3	0.21	0.13	-4.86
3,119.1	2.02 1.90	195.56	3,118.7 3,150.1	-14.7 -15.7	8.1	17.2	0.21	-0.38	-4.00 2.07
3,182.3	1.85	194.15	3,181.9	-16.7	7.8	18.2	0.26	-0.16	-6.48
3,213.6	1.92	194.04	3,213.2	-17.7	7.6	19.1	0.22	0.22	-0.35
3,245.6	1.98	193.23	3,245.2	-18.8	7.3	20.0	0.21	0.19	-2.53
3,277.0 3,308.7	1.94 1.93	192.50 191.56	3,276.6 3,308.2	-19.8 -20.9	7.1 6.9	21.0 21.9	0.15 0.10	-0.13 -0.03	-2.32 -2.97
3,340.2	1.89	191.73	3,339.7	-20.9 -21.9	6.7	22.9	0.13	-0.03	0.54
3,371.5	1.93	190.15	3,339.7	-22.9	6.5	23.8	0.13	0.13	-5.04
3,403.3	1.80	191.60	3,402.8	-24.0	6.3	24.8	0.43	-0.41	4.56
3,434.8	1.71	190.85	3,434.3	-24.9	6.1	25.6	0.29	-0.29	-2.38
3,466.7	1.71	188.96	3,466.2	-25.9	5.9	26.5	0.18	0.00	-5.93
3,498.2	1.76	186.81	3,497.6	-26.8	5.8	27.4	0.26	0.16	-6.83
3,529.5 3,561.2	1.76 1.80	186.41 191.95	3,528.9 3,560.6	-27.7 - 28.7	5.7 5.5	28.3 29.2	0.04 0.56	0.00 0.13	-1.28 17.48
3,592.2	1.82	192.00	3,591.6	-29.7	5.3	30.1	0.06	0.06	0.16
3,624.5	1.85	192.43	3,623.9	-30.7	5.1	31.0	0.10	0.09	1.33
3,656.1	1.89	190.55	3,655.5	-31.7	4.9	31.9	0.23	0.13	-5.95
3,687.9 3,719.5	2.02 1.98	190.59 192.65	3,687.3 3,718.8	-32.8 -33.8	4.7 4.5	32.9 33.9	0.41 0.26	0.41 -0.13	0.13 6.53
•									
3,751.0	1.99	191.61	3,750.3	-34.9	4.2	34.9	0.12	0.03	-3.30
3,782.3	1.98	190.41	3,781.6	-36.0	4.0	35.9	0.14	-0.03	-3.83
3,813.9	1.89	190.37	3,813.2	-37.0	3.8	36.8	0.28	-0.28	-0.13
3,845.1	1.89	189.58	3,844.4	-38.0	3.7	37.8	0.08	0.00	-2.53
3,876.4	1.71	188.74	3,875.7	-39.0	3.5	38.7	0.58	-0.58	-2.69
3,908.3	1.85	186.46	3,907.6	-40.0	3.4	39.6	0.49	0.44	-7.14
3,940.0	1.85	188.04	3,939.2	-41.0	3.2	40.5	0.16	0.00	5.00
3,971.9	1.89	187.82	3,971.1	-42.0	3.1	41.5	0.13	0.13	-0.69
4,003.1	1.76	187.73	4,002.3	-43.0	3.0	42.4	0.42	-0.42	-0.29
4,034.6	1.76	182.77	4,033.8	-44.0	2.9	43.3	0.48	0.00	-15.73
4,066.2	1.67	183.56	4,065.4	-44.9	2.8	44.2	0.29	-0.28	2.50
4,098.2	1.54	184.57	4,097.3	-45.8	2.8	45.1	0.42	-0.41	3.16
4,129.3	1.58	185.36	4,128.5	-46.7	2.7	45.9	0.15	0.13	2.53
4,161.0	1.49	181.27	4,160.1	-47.5	2.6	46.7	0.45	-0.28	-12.93
4,192.4	1.55	177.73	4,191.5	-48.3	2.6	47.5	0.35	0.19	-11.25
4,224.1	1.54	180.83	4,223.2	-49.2	2.7	48.3	0.27	-0.03	9.78
4,255.8	1.41	179.34	4,254.9	-50.0	2.6	49.1	0.43	-0.41	-4.71
4,291.9	1.45	179.56	4,291.0	-50.9	2.7	50.0	0.11	0.11	0.61
4,323.3	1.58	174.90	4,322.4	-51.7	2.7	50,8	0.57	0.41	-14.83
4,354.9	1.54	180.48	4,353.9	-52.6	2.7	51.7	0.50	-0.13	17.68
4,386.9	1.36	180.04	4,386.0	-53.4	2.7	52.4	0.56	-0.56	-1.37

Survey Report

Company:

NEWFIELD EXPLORATION

Project: USGS Myton SW (UT) Site:

Well:

SECTION 19 T4S, R1E 11-19-4-1E

Wellbore: Wellbore #1 Actual Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method: Database:

Well 11-19-4-1E

11-19-4-1E @ 5001.0ft (Newfield Rig #2)

11-19-4-1E @ 5001.0ft (Newfield Rig #2)

Minimum Curvature

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
4,418.5	1.32	182.06	4,417.5	-54.2	2.7	53.2	0.20	-0.13	6.41
4,449.8	1.41	183.69	4,448.9	-54.9	2.7	53.9	0.31	0.29	5.20
4,481.5	1.54	178.94	4,480.5	-55.7	2.7	54.7	0.56	0.41	-15.00
4,512.9	1.54	184.83	4,511.9	-56.6	2.6	55.5	0.50	0.00	18.74
4,544.4	1.58	183.73	4,543.4	-57.4	2.6	56.3	0.16	0.13	-3.49
4,576.3	1.67	186.94	4,575.3	-58.3	2.5	57.1	0.40	0.28	10.07
4,608.1	1.71	192.96	4,607.1	-59.2	2.3	58.0	0.57	0.13	18.91
4,640.4	1.76	193.18	4,639.4	-60.2	2.1	58.9	0.16	0.15	0.68
4,672.3	1.71	195.91	4,671.2	-61.1	1.9	59.7	0.30	-0.16	8.57
4,703.7	1.67	195,16	4,702.6	-62.0	1.6	60.5	0.15	-0.13	-2.39
4,735.3	1.71	197.93	4,734.2	-62.9	1.3	61.3	0.29	0.13	8.76
4,766.8	1.85	195.16	4,765.7	-63.8	1.1	62.1	0.52	0.44	-8.79
4,798.9	1.85	193.01	4,797.8	-64.8	8.0	63.1	0.22	0.00	-6.70
4,830.2	1.85	195.34	4,829.0	-65.8	0.6	63.9	0.24	0.00	7.45
4,862.0	1.85	194.63	4,860.8	-66.8	0.3	64.8	0.07	0.00	-2.23
4,894.6	1.76	189.93	4,893.4	-67.8	0.1	65.8	0.53	-0.28	-14.40
4,925.9	1.93	190.19	4,924.7	-68.8	-0.1	66.7	0.54	0.54	0.83
4,957.5	1.85	191.56	4,956.3	-69.8	-0.3	67.6	0.29	-0.25	4.33
4,989.2	1.89	191.47	4,988.0	-70.9	-0.5	68.6	0.13	0.13	-0.28
5,020.7	2.02	191.56	5,019.5	-71.9	-0.7	69.5	0.41	0.41	0.29
5,052.4	2.20	185.14	5,051.2	-73.1	-0.9	70.6	0.94	0.57	-20.23
5,084.0	2.07	185.40	5,082.7	-74.2	-1.0	71.7	0.41	-0.41	0.82
5,115.0	1.67	186.81	5,113.7	-75.2	-1.1	72.7	1.30	-1.29	4.55
5,146.9	1.58	187.91	5,145.6	-76.1	-1.2	73.5	0.30	-0.28	3.45
5,178.8	1.54	189.31	5,177.4	-77.0	-1.3	74.3	0.17	-0.13	4.39
5,210.7	1.58	194.32	5,209.3	-77.8	-1.5	75.1	0.45	0.13	15.71
5,241.8	1.41	192.83	5,240.5	-78.6	-1.7	75.8	0.56	-0.55	-4.78
5,305.4	1.14	193.93	5,304.0	-80.0	-2.0	77.1	0.43	-0.43	1.73
5,336.9	1.14	194.63	5,335.5	-80.6	-2.2	77.6	0.04	0.00	2.22
5,368.7	1.19	195.82	5,367.3	-81.2	-2.4	78.2	0.17	0.16	3.74
5,400.5	1.20	191.00	5,399.1	-81.9	-2.5	78.8	0.32	0.03	-15.14
5,527.6	1.41	189.71	5,526.2	-84.7	-3.0	81.4	0.17	0.17	-1.01
5,559.4	1.45	187.82	5,558.0	-85.5	-3.1	82.1	0.19	0.13	-5.95 -9.66
5,590.8	1.58	184.79	5,589.3	-86.3	-3.2	82.9	0.49	0.41	
5,622.6	1.54	182.99	5,621.2	-87.2	-3.3	83.7	0.20	-0.13	-5.65
5,653.9	1.63	186.50	5,652.5	-88.1	-3.4	84.5	0.42	0.29	11.21
5,685.5	1.71	191.78	5,684.0	-89.0	-3.5	85.4	0.55	0.25	16.73
5,717.5	1.88	196.52 203.68	5,716.0 5,747.3	-89.9 -90.9	-3.8 -4.1	86.3 87.1	0.71 0.75	0.53 -0.10	14.82 22.85
5,748.8	1.85		5,747.3						
5,780.7	1.80	202.67	5,779.2	-91.8	-4.5	87.9	0.19	-0.16	-3.17
5,812.3	1.67	205.71	5,810.8	-92.7	-4.9	88.7	0.50	-0.41	9.61
5,843.8	1.57	202.65	5,842.2	-93.5	-5.3	89.4	0.42	-0.32	-9.74
5,875.5	1.58	201.40	5,873.9	-94.3	-5.6	90.1	0.11	0.03	-3.94
5,907.1	1.71	200.26	5,905.5	-95.2	-5.9	90.8	0.42	0.41	-3.60
5,938.9	1.80	202.19	5,937.4	-96.1	-6.3	91.6	0.34	0.28	6.06
5,970.5	2.01	207.30	5,968.9	-97.0	-6.7	92.4	0.86	0.67	16.21
6,002.1	2.15	205.49	6,000.5	-98.1	-7.2	93.3	0.49	0.44	-5.72
6,033.7	2.50	208.08	6,032.0	-99.2	-7.8	94.2	1.16	1.11	8.20
6,065.1	2.68	203.95	6,063.4	-100.5	-8.4	95.3	0.82	0.57	-13.14
6,096.6	2.55	199.42	6,094.9	-101.8	-9.0	96.5	0.78	-0.41	-14.40
6,128.4	2.46	193.58	6,126.7	-103.1	-9.3	97.7	0.85	-0.28	-18.33
6,160.0	2.37	188.70	6,158.3	-104.4	-9.6	98.9	0.71	-0.28	-15.45
6,191.7	2.37	186.28	6,189.9	-105.7	-9.8	100.1	0.32	0.00	-7.65

Survey Report

Company: Project: NEWFIELD EXPLORATION USGS Myton SW (UT)

Site: Well: SECTION 19 T4S, R1E 11-19-4-1E

Wellbore: Design: Wellbore #1 Actual Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well 11-19-4-1E

11-19-4-1E @ 5001.0ft (Newfield Rig #2)

11-19-4-1E @ 5001.0ft (Newfield Rig #2)

True

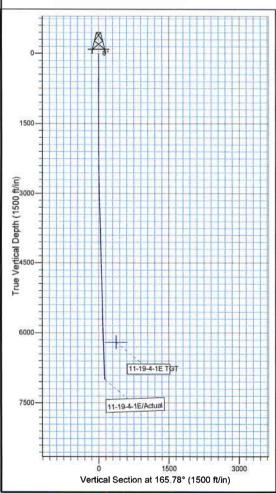
Minimum Curvature

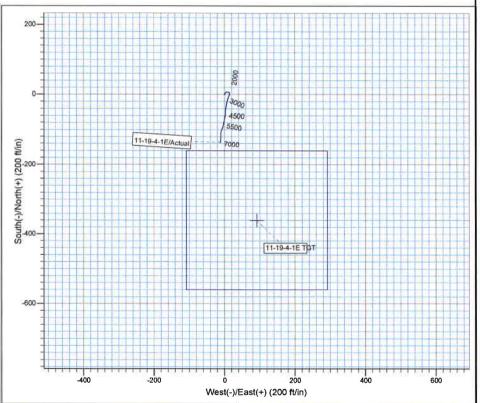
У									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
11-19-4-1E T	TGT .								
6,223.5	2.42	181.14	6,221.7	-107.1	-9.9	101.4	0.69	0.18	-15.93
6,255.1	2.24	183.29	6,253.2	-108.4	-9.9	102.6	0.63	-0.57	6.80
6,286.7	2.29	179.69	6,284.9	-109.6	-9.9	103.8	0.48	0.16	-11.37
6,318.4	2.24	180.04	6,316.5	-110.9	-9.9	105.0	0.16	-0.16	1.10
6,350.2	2.11	181.45	6,348.2	-112.1	-10.0	106.2	0.44	-0.41	4.44
6,381.7	2.15	180.22	6,379.7	-113.2	-10.0	107.3	0.19	0.13	-3.91
6,412.8	2.07	180.10	6,410.8	-114.4	-10.0	108.4	0.26	-0.26	-0.38
6,444.7	2.10	180.50	6,442.7	-115.5	-10.0	109.5	0.10	0.09	1.25
6,508.1	2.20	179.21	6,506.1	-117.9	-10.0	111.8	0.18	0.16	-2.04
6,539.5	2.27	178.12	6,537.5	-119.1	-9.9	113.0	0.26	0.22	-3.47
6,571.0	2.29	181.62	6,568.9	-120.4	-9.9	114.3	0.45	0.06	11.13
6,603.0	2.24	179.43	6,600.9	-121.7	-10.0	115.5	0.31	-0.16	-6.84
6,634.7	2.15	183.25	6,632.5	-122.9	-10.0	116.6	0.54	-0.28	12.07
6,666.1	2.29	180.97	6,664.0	-124.1	-10.0	117.8	0.53	0.45	-7.25
6,697.6	2.29	184.22	6,695.4	-125.3	-10.1	119.0	0.41	0.00	10.34
6,729.1	2.24	185.27	6,726.9	-126.6	-10.2	120.2	0.21	-0.16	3.33
6,760.7	2.15	186.11	6,758.5	-127.8	-10.3	121.3	0.30	-0.28	2.65
6,792.1	2.15	186.94	6,789.9	-129.0	-10.4	122.4	0.10	0.00	2.64
6,823.5	2.07	188.26	6,821.2	-130.1	-10.6	123.5	0.30	-0.26	4.21
6,858.7	2.11	188.26	6,856.4	-131.4	-10.8	124.7	0.11	0.11	0.00
6,890.1	2.11	184.92	6,887.8	-132.5	-10.9	125.8	0.39	0.00	-10.64
6,922.0	2.20	183.88	6,919.6	-133.7	-11.0	126.9	0.31	0.28	-3.26
6,954.3	2.24	183.76	6,951.9	-135.0	-11.1	128.1	0.12	0.12	-0.37
7,000.0	2.24	183.76	6,997.6	-136.7	-11.2	129.8	0.00	0.00	0.00

arget Name									
- hit/miss target	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	Latitude	Longitude
1-19-4-1E TGT	0.00	0.00	6,200.0	-360.3	91.3	7,215,781.51	2,080,017.34	40° 7' 6.899 N	109° 55' 40.685 \

Checked By:	Approved By:	Date:	

Project: USGS Myton SW (UT) Site: SECTION 19 T4S, R1E Well: 11-19-4-1E


Wellbore: Wellbore #1 SURVEY: Actual


RVEY: Actual FINAL SURVEY REPORT

Azimuths to True North Magnetic North: 11,34°

Magnetic Field Strength: 52387 0snT Dip Angle: 65.90° Date: 2010/12/02 Model: IGRF2010

PAYZONE

Design: Actual (11-19-4-1E/Wellbore #1)

Created By: Land. Will Date: 11:31, April 22 2011
THIS SURVEY IS CORRECT TO THE BEST OF MY
KNOWLEDGE AND IS SUPPORTED BY ACTUAL FIELD DATA.